(copied from old kiwi)
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Variety:
+
=Varieties=
A variety is a mathematical construct used to define [Decision Surfaces].  Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.
+
from [[Lecture_1_-_Introduction_OldKiwi|Lecture 1, ECE662, Spring 2010]]
 +
----
 +
 
 +
A variety is a mathematical construct used to define [[Decision Surfaces_OldKiwi|Decision Surfaces]].  Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.
  
 
Definition:
 
Definition:
Line 10: Line 13:
  
 
<math>\mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \  for \  all \  p \in \mathbf{P} \right\}</math>
 
<math>\mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \  for \  all \  p \in \mathbf{P} \right\}</math>
 +
----
 +
[[Lecture_1_-_Introduction_OldKiwi|Back to Lecture 1, ECE662, Spring 2010]]

Latest revision as of 09:46, 10 June 2013

Varieties

from Lecture 1, ECE662, Spring 2010


A variety is a mathematical construct used to define Decision Surfaces. Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.

Definition: Let

$ \mathbf{x}\in {\Re}^n $ and $ \mathbf{P} $ be set of polynomials: $ \Re ^n \rightarrow \Re $.

Then variety is given by

$ \mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \ for \ all \ p \in \mathbf{P} \right\} $


Back to Lecture 1, ECE662, Spring 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva