Line 39: | Line 39: | ||
* Define the counter-clockwise rotation matrix | * Define the counter-clockwise rotation matrix | ||
+ | |||
+ | the matrix rotates vector <math>v_0</math> in a 2-D real space by angle <math>\theta</math> in a fixed coordinate system. | ||
<math>\begin{bmatrix} | <math>\begin{bmatrix} | ||
Line 75: | Line 77: | ||
* C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013. | * C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013. | ||
+ | |||
+ | * E. W. Weisstein, "Rotation Matrix." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RotationMatrix.html. May 8th, 2013 [May 21st, 2013] | ||
Revision as of 12:02, 21 May 2013
The Bouman Lectures on Image Processing
A sLecture by Maliha Hossain
Subtopic 3: Co-ordinate Rotation
© 2013
Contents
Excerpt from Prof. Bouman's Lecture
Accompanying Lecture Notes
- Define the counter-clockwise rotation matrix
the matrix rotates vector $ v_0 $ in a 2-D real space by angle $ \theta $ in a fixed coordinate system.
$ \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} $
- Define the new coordinate system $ (r,z) $
$ \begin{bmatrix} x \\ y \end{bmatrix} = A_{\theta}\begin{bmatrix} r \\ z \end{bmatrix} $
- Inverse Transformation
$ \begin{bmatrix} r \\ z \end{bmatrix} = A_{-\theta}\begin{bmatrix} x \\ y \end{bmatrix} $
References
- C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.
- E. W. Weisstein, "Rotation Matrix." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RotationMatrix.html. May 8th, 2013 [May 21st, 2013]
Questions and comments
If you have any questions, comments, etc. please post them on this page
Back to the "Bouman Lectures on Image Processing" by Maliha Hossain