(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
=[[MA375]]: The Principle of Induction=
 +
Lecture Notes
 +
----
 
Example:
 
Example:
 
Prove that <math> \forall n\in{\mathbb N}, n^5-n </math> is a multiple of n.
 
Prove that <math> \forall n\in{\mathbb N}, n^5-n </math> is a multiple of n.
 +
 +
Base case: n=0...    <math> 0^5=0  </math> as we want
 +
 +
Inductive step: Assume that 5 divides <math> n^5-n </math> and show that 5 divides <math> (n+1)^5-(n+1) </math>
 +
 +
P(1) = 1-1 = 0 (true,divisible by 5)
 +
 +
P(2) = 32-2 = 30 (true,divisible by 5)
 +
 +
let P(m) be true, P(m+1) = <math> (m+1)^5-m </math>
 +
 +
P(m+1) = <math> (m^5+1)+5*(other terms) </math>.
 +
                                   
 +
which is divisible by 5 since P(m) is true.
 +
 +
Hence 5| <math> n^5-n </math>
 +
----
 +
[[Main_Page_MA375Fall2008walther|Back to MS375, Fall 2008, Prof. Walther]]

Latest revision as of 07:08, 20 May 2013

MA375: The Principle of Induction

Lecture Notes


Example: Prove that $ \forall n\in{\mathbb N}, n^5-n $ is a multiple of n.

Base case: n=0... $ 0^5=0 $ as we want

Inductive step: Assume that 5 divides $ n^5-n $ and show that 5 divides $ (n+1)^5-(n+1) $

P(1) = 1-1 = 0 (true,divisible by 5)

P(2) = 32-2 = 30 (true,divisible by 5)

let P(m) be true, P(m+1) = $ (m+1)^5-m $

P(m+1) = $ (m^5+1)+5*(other terms) $.

which is divisible by 5 since P(m) is true.

Hence 5| $ n^5-n $


Back to MS375, Fall 2008, Prof. Walther

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn