Line 26: Line 26:
 
Example #1: Let's take the Transformation:  
 
Example #1: Let's take the Transformation:  
  
<font size=5><math>T(u,v) = <u*\cos v,r*\sin v> </math> </font>.
+
<font size=4><math>T(u,v) = <u * \cos v,r * \sin v> </math> </font>.
  
 
What would be the Jacobian Matrix of this Transformation?  
 
What would be the Jacobian Matrix of this Transformation?  
Line 34: Line 34:
 
<math>
 
<math>
  
x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v   \frac{\partial x}{\partial v} = -u*\sin v
+
x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v \; \frac{\partial x}{\partial v} = -u*\sin v
y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v   \frac{\partial y}{\partial v} = u*\cos v
+
y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v \; \frac{\partial y}{\partial v} = u*\cos v
  
 
</math>
 
</math>
Line 54: Line 54:
  
 
----
 
----
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 70%; margin: auto; border: 1px solid #aaa; padding: 2em;">
 
</div>
 

Revision as of 08:26, 8 May 2013


Jacobians and their applications

by Joseph Ruan


Basic Definition

The Jacobian Matrix is just a matrix that takes the partial derivatives of each element of a function (which is in the form of a vector. Let F be a function such that

$ F(u,v)=<x,y> $

then the Jacobian matrix of this function would look like this:

$ J(u,v)=\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} $

To help illustrate this, let's do an example:

Example #1: Let's take the Transformation:

$ T(u,v) = <u * \cos v,r * \sin v> $ .

What would be the Jacobian Matrix of this Transformation?

Solution: Note that $ x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v \; \frac{\partial x}{\partial v} = -u*\sin v y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v \; \frac{\partial y}{\partial v} = u*\cos v $

Therefore the Jacobian matrix is

$ \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}= \begin{bmatrix} \cos v & -u*\sin v \\ \sin v & u*\cos v \end{bmatrix} $

Now after doing



Alumni Liaison

EISL lab graduate

Mu Qiao