Line 5: Line 5:
 
[[Category:math squad]]
 
[[Category:math squad]]
  
==Jacobians==
+
== Jacobians and their applications ==
  
This page is dedicated to explaining what the Jacobian matrix is, and also how to use it. In general, this topic is useful for Vector Calculus and making some surface integrals easier to do.
+
by Joseph Ruan
 +
----
  
 
===Basic Definition===
 
===Basic Definition===
Line 50: Line 51:
 
----
 
----
 
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 70%; margin: auto; border: 1px solid #aaa; padding: 2em;">
 
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 70%; margin: auto; border: 1px solid #aaa; padding: 2em;">
 +
</div>

Revision as of 08:19, 8 May 2013


Jacobians and their applications

by Joseph Ruan


Basic Definition

The Jacobian Matrix is just a matrix that takes the partial derivatives of each element of a function (which is in the form of a vector. Let F be a function such that

$ F(u,v)=<x,y> $

then the Jacobian matrix of this function would look like this:

$ J(u,v)=\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} $

To help illustrate this, let's do an example:

Example #1) Let's take the Transformation: $ T(u,v) = <u*\cos v,r*\sin v>. $ What would be the Jacobian Matrix of this Transformation?

Solution: Note that $ x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v and \frac{\partial x}{\partial v} = -u*\sin v y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v and \frac{\partial y}{\partial v} = u*\cos v $

Therefore the Jacobian matrix is

$ \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}= \begin{bmatrix} \cos v & -u*\sin v \\ \sin v & u*\cos v \end{bmatrix} $

Now after doing



Alumni Liaison

ECE462 Survivor

Seraj Dosenbach