Line 1: Line 1:
 
Note: this is the first of many pages to be uploaded.  
 
Note: this is the first of many pages to be uploaded.  
 +
 
----
 
----
  
 +
<br> 1/9/13
  
1/9/13
+
If S is discrete and finite S = {<span class="texhtml">''s''<sub>1</sub>,''s''<sub>2</sub>,''s''<sub>3</sub></span>} S = {head,tail}, S = {win, lose}, S = {1,2,3,4,5,6}
  
If S is discrete and finite
+
If S is discrete but infinite,  
S = {<math>s_1,s_2,s_3</math>}
+
S = {head,tail},
+
S = {win, lose},
+
S = {1,2,3,4,5,6}
+
  
If S is discrete but infinite,
+
S = {<span class="texhtml">''s''<sub>1</sub>,''s''<sub>2</sub>,''s''<sub>3</sub></span>,...} ex. S = {1,2,3,4,...}
  
S =  {<math>s_1,s_2,s_3</math>,...}
+
     S = {sin(2<span class="texhtml">π</span>*440t),sin(2<span class="texhtml">π</span>*880t),sin(2<span class="texhtml">π</span>*1320t),...}
ex.  S = {1,2,3,4,...}
+
    Observe <math>_{S = \mathbb{R}}</math> is not routable; S = [0,1] is not routable
     S = {sin(2<math>\pi</math>*440t),sin(2<math>\pi</math>*880t),sin(2<math>\pi</math>*1320t),...}
+
    S = {sin(2<span class="texhtml">π</span>*f*t)} f <math>\in \mathbb{R} \geq</math> 0  
    Observe <math>_{S = \mathbb{R}}</math> is not routable; S = [0,1] is not routable
+
      = {sin(2<span class="texhtml">π</span>*f*t)|0<math>\leq f < \infty</math>}
    S = {sin(2<math>\pi</math>*f*t)} f <math>\in \mathbb{R} \geq</math> 0  
+
      = {sin(2<math>\pi</math>*f*t)|0<math>\leq f < \infty</math>}
+
  
<math>\mathbb{Z}</math> is all integers <math>-\infty</math> to <math>\infty</math> 
+
<math>\mathbb{Z}</math> is all integers <math>-\infty</math> to <math>\infty</math>   
 +
 
 +
Is <math>\mathbb{Z}</math> routable? yes.
  
Is <math>\mathbb{Z}</math> routable? yes. 
 
 
   <math>\mathbb{Z}</math>={0,1,-1,2,-2,3,-3, }as opposed to <math>\mathbb{R}</math>
 
   <math>\mathbb{Z}</math>={0,1,-1,2,-2,3,-3, }as opposed to <math>\mathbb{R}</math>
  
<math>\mathbb{R}</math>= {0,3,e,<math>\pi</math>,-1,1.14,<math>\sqrt{2}</math>}
+
<math>\mathbb{R}</math>= {0,3,e,<span class="texhtml">π</span>,-1,1.14,<math>\sqrt{2}</math>}  
 +
 
 +
Many different ways to write a set [0,1] = {x <math>\in \mathbb{R} </math>such that(s. t.) 0<math>\leq x \leq</math> 1} ={real positive numbers no greater than 1 as well as 0}
 +
 
 +
[[Image:100_3.jpg|left|500x700px]]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
Many different ways to write a set
 
[0,1] = {x <math>\in \mathbb{R} </math>such that(s. t.) 0<math>\leq x \leq</math> 1}
 
={real positive numbers no greater than 1 as well as 0}
 
  
 
----
 
----
  
 
Go to lecture notes: [[ECE302S13Notes|2]] [[302L3|3]] [[302L4|4]] [[302L6|6]] [[302L7|7]] [[302L8|8]] [[302L9|9]] [[302L10|10]] [[302L12|12]] [[302L18|18]] [[302L20|20]] [[302L32|32]] [[302L35|35]] [[302L37|37]] [[302L38|38]] [[302L39|39]]
 
Go to lecture notes: [[ECE302S13Notes|2]] [[302L3|3]] [[302L4|4]] [[302L6|6]] [[302L7|7]] [[302L8|8]] [[302L9|9]] [[302L10|10]] [[302L12|12]] [[302L18|18]] [[302L20|20]] [[302L32|32]] [[302L35|35]] [[302L37|37]] [[302L38|38]] [[302L39|39]]

Revision as of 05:03, 15 April 2013

Note: this is the first of many pages to be uploaded.



1/9/13

If S is discrete and finite S = {s1,s2,s3} S = {head,tail}, S = {win, lose}, S = {1,2,3,4,5,6}

If S is discrete but infinite,

S = {s1,s2,s3,...} ex. S = {1,2,3,4,...}

    S = {sin(2π*440t),sin(2π*880t),sin(2π*1320t),...}
   Observe $ _{S = \mathbb{R}} $ is not routable; S = [0,1] is not routable
   S = {sin(2π*f*t)} f $ \in \mathbb{R} \geq $ 0 
     = {sin(2π*f*t)|0$ \leq f < \infty $}

$ \mathbb{Z} $ is all integers $ -\infty $ to $ \infty $

Is $ \mathbb{Z} $ routable? yes.

  $ \mathbb{Z} $={0,1,-1,2,-2,3,-3, }as opposed to $ \mathbb{R} $

$ \mathbb{R} $= {0,3,e,π,-1,1.14,$ \sqrt{2} $}

Many different ways to write a set [0,1] = {x $ \in \mathbb{R} $such that(s. t.) 0$ \leq x \leq $ 1} ={real positive numbers no greater than 1 as well as 0}

100 3.jpg





























Go to lecture notes: 2 3 4 6 7 8 9 10 12 18 20 32 35 37 38 39

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett