Line 1: Line 1:
 
If S is discrete and finite
 
If S is discrete and finite
S = <math>{s_1,s_2,s_3}</math>
+
S = {<math>s_1,s_2,s_3</math>}
S = {head,tail}
+
S = {head,tail}
S = {win, lose}
+
S = {win, lose}
S = {1,2,3,4,5,6}
+
S = {1,2,3,4,5,6}
  
 
1/9/13
 
1/9/13
  
  
S = <math>{s_1,s_2,s_3}</math>
+
S = {<math>s_1,s_2,s_3</math>}
  
 
If S is discrete but infinite,
 
If S is discrete but infinite,
  
S =  <math>{s_1,s_2,s_3}</math>,...}
+
S =  {<math>s_1,s_2,s_3</math>,...}
 
ex.  S = {1,2,3,4,...}
 
ex.  S = {1,2,3,4,...}
      S = {sin(2*440t),sin(2*880t),sin(2*1320t),...}
+
    S = {sin(2<math>\pi</math>*440t),sin(2<math>\pi</math>*880t),sin(2<math>\pi</math>*1320t),...}
Observe S = is not routable; S = [0,1] is not routable
+
    Observe <math>_{S = \mathbb{R}}</math> is not routable; S = [0,1] is not routable
S = {sin(2*f*t)} =
+
            S = {sin(2<math>\pi</math>*f*t)} f <math>\in \mathbb{R} \geq</math> 0
{sin(2*f*t)|0}
+
              = {sin(2<math>\pi</math>*f*t)|0<math>\leq f < \infty</math>}
  
is all integers -to
+
is all integers <math>-\infty</math> to <math>\infty</math>
  
 
Is routable? yes.   
 
Is routable? yes.   

Revision as of 16:33, 14 April 2013

If S is discrete and finite S = {$ s_1,s_2,s_3 $} S = {head,tail} S = {win, lose} S = {1,2,3,4,5,6}

1/9/13


S = {$ s_1,s_2,s_3 $}

If S is discrete but infinite,

S = {$ s_1,s_2,s_3 $,...} ex. S = {1,2,3,4,...}

    S = {sin(2$ \pi $*440t),sin(2$ \pi $*880t),sin(2$ \pi $*1320t),...}
    Observe $ _{S = \mathbb{R}} $ is not routable; S = [0,1] is not routable
            S = {sin(2$ \pi $*f*t)} f $ \in \mathbb{R} \geq $ 0 
              = {sin(2$ \pi $*f*t)|0$ \leq f < \infty $}

is all integers $ -\infty $ to $ \infty $

Is routable? yes. ={0,1,-1,2,-2,3,-3, }as opposed to 

= {0,3,e,,-1,1.14,, }

Many different ways to write a set [0,1] = {xsuch that(s. t.) 0x 1} ={real positive numbers no greater than 1 as well as 0}

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett