(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:bonus point project]]
 
[[Category:bonus point project]]
1.What is eigenvalue and eigenvector?
+
[[Category:tutorial]]
 +
[[Category:linear algebra]]
 +
[[Category:MA265]]
 +
[[Category:MA265Fall2011Walther]]
 +
 
 +
 
 +
<center><font size= 4>
 +
'''Eigenvalues and Eigenvectors'''
 +
</font size>
 +
 
 +
Student project for [[MA265]]
 +
 
 +
Author: Libo Dong
 +
</center>
 +
----
 +
----
 +
=1.What is eigenvalue and eigenvector?=
  
 
Let Linear transformation L:V->V be a linear transformation of an n-dimensional vector space V into itself. The number λ is called an 'eigenvalue'of L if there exist a non zero vector x in V such that L(X) = λ*x. Note that every non zero vector x satisfying this equation is then called an eigenvector of L associated with the eigenvalue λ.(Eigen means 'proper' in German).
 
Let Linear transformation L:V->V be a linear transformation of an n-dimensional vector space V into itself. The number λ is called an 'eigenvalue'of L if there exist a non zero vector x in V such that L(X) = λ*x. Note that every non zero vector x satisfying this equation is then called an eigenvector of L associated with the eigenvalue λ.(Eigen means 'proper' in German).
Line 8: Line 24:
 
In another way,eigenvector can be referred as a square matrix which parallel to the original vector after multiplied to the vector.
 
In another way,eigenvector can be referred as a square matrix which parallel to the original vector after multiplied to the vector.
  
2.How to calculate eigenvalue and eigenvector?
+
=2.How to calculate eigenvalue and eigenvector?=
 
a.from the definition it can be derived that if A is the original vector, A*x=λ*x.
 
a.from the definition it can be derived that if A is the original vector, A*x=λ*x.
 
b.By subtracting both sides of the equation by λ*x, the equation will be : A*x-λ*x=0.
 
b.By subtracting both sides of the equation by λ*x, the equation will be : A*x-λ*x=0.
Line 20: Line 36:
 
a.first enter the matrix that you want to calculate: A=[a,b,c;d,e,f;g,h,i].(use space to separate each row elements and semicolon to separate rows)
 
a.first enter the matrix that you want to calculate: A=[a,b,c;d,e,f;g,h,i].(use space to separate each row elements and semicolon to separate rows)
 
the screen will show:  
 
the screen will show:  
A=<math>\left(\begin{array}{cccc}a&b\\e&f\end{array}\right)</math>.
+
 
 +
<math>A= \left(\begin{array}{cccc}a&b\\e&f\end{array}\right)</math>.
  
 
b.type in roots(poly(A)). This command order matlab to calculate the roots of the determinant equation (equals to zero)of the orignals matrix which subtracted by the identity matrix. poly(A) is the characteristic equation of the matirx A For example:
 
b.type in roots(poly(A)). This command order matlab to calculate the roots of the determinant equation (equals to zero)of the orignals matrix which subtracted by the identity matrix. poly(A) is the characteristic equation of the matirx A For example:
det(A-λ*I)=<math>\left(\begin{array}{cccc}a-lambda&b&c\\d&e-lambda&f\\g&h&i-lambda\end{array}\right)</math>=0。
+
 
 +
<math>det(A-\lambda I)=\left(\begin{array}{cccc}a-\lambda&b&c\\d&e-\lambda&f\\g&h&i-\lambda\end{array}\right)=0.</math>
 +
 
 
The results is the eigenvalue to the matrix.the result of the command above will display the possible λ values.
 
The results is the eigenvalue to the matrix.the result of the command above will display the possible λ values.
  
Line 30: Line 49:
  
 
Example:  
 
Example:  
A=<math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math>.
+
 
 +
<math>A= \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math>.
 +
 
 
Solve for the eigenvalue/eigenvector.
 
Solve for the eigenvalue/eigenvector.
  
By hand: det(A-λ*I)=<math>\left(\begin{array}{cccc}3-lambda&-3\\6&12-lambda\end{array}\right)</math>=0.
+
By hand:  
 +
 
 +
<math>det(A-\lambda*I)= \left(\begin{array}{cccc}3-lambda&-3\\6&12-lambda\end{array}\right) =0. </math>
 
         (3-λ)*(12-λ)+18=0.
 
         (3-λ)*(12-λ)+18=0.
 
         λ^2-15λ+54=0
 
         λ^2-15λ+54=0
Line 39: Line 62:
  
  
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math>*x=λ*x.
+
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)*x=\lambda *x.</math>
 
         case 1: λ=5
 
         case 1: λ=5
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math><math>\left(\begin{array}{cccc}x1\\x2\end{array}\right)</math>=<math>\left(\begin{array}{cccc}6*x1\\6*x2\end{array}\right)</math>.
+
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math><math>\left(\begin{array}{cccc}x1\\x2\end{array}\right)</math>=<math>\left(\begin{array}{cccc}6*x1\\6*x2\end{array}\right).</math>
         it can be derived that 3x1-3x2=6x1; 6x1+12x2=6x2,thus x1=-x2.Then x=<math>\left(\begin{array}{cccc}1\\-1\end{array}\right)</math>
+
         it can be derived that 3x1-3x2=6x1; 6x1+12x2=6x2,thus x1=-x2.Then  
 +
 
 +
<math>x=\left(\begin{array}{cccc}1\\-1\end{array}\right)</math>
 
    
 
    
 
         case 2: λ=9
 
         case 2: λ=9
 
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math><math>\left(\begin{array}{cccc}x1\\x2\end{array}\right)</math>=<math>\left(\begin{array}{cccc}9*x1\\9*x2\end{array}\right)</math>.
 
         <math>\left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)</math><math>\left(\begin{array}{cccc}x1\\x2\end{array}\right)</math>=<math>\left(\begin{array}{cccc}9*x1\\9*x2\end{array}\right)</math>.
         it can be derived that 3x1-3x2=9x1; 6x1+12x2=9x2,thus -2*x1=x2.Then x=<math>\left(\begin{array}{cccc}1\\-2\end{array}\right)</math>
+
         it can be derived that 3x1-3x2=9x1; 6x1+12x2=9x2,thus -2*x1=x2.Then <math>x= \left(\begin{array}{cccc}1\\-2\end{array}\right)</math>
  
 
By Matlab:
 
By Matlab:
Line 66: Line 91:
  
  
Relation to other math courses: MA266
+
Relation to other math courses: [[MA266]]
 
+
----
 
+
[[2011_Fall_MA_265_Walther|Back to MA265, Fall 2011, Walther]]
 
+
[[Category:MA265Fall2011Walther]]
+

Latest revision as of 08:11, 11 April 2013


Eigenvalues and Eigenvectors

Student project for MA265

Author: Libo Dong



1.What is eigenvalue and eigenvector?

Let Linear transformation L:V->V be a linear transformation of an n-dimensional vector space V into itself. The number λ is called an 'eigenvalue'of L if there exist a non zero vector x in V such that L(X) = λ*x. Note that every non zero vector x satisfying this equation is then called an eigenvector of L associated with the eigenvalue λ.(Eigen means 'proper' in German).

-Referenced from Elementary Linear Algebra with Applications and Labs

In another way,eigenvector can be referred as a square matrix which parallel to the original vector after multiplied to the vector.

2.How to calculate eigenvalue and eigenvector?

a.from the definition it can be derived that if A is the original vector, A*x=λ*x. b.By subtracting both sides of the equation by λ*x, the equation will be : A*x-λ*x=0. c.By the definition of identity matrix, it is fine to add I to the λ*x term; A*x-λ*I*x=0.(Note: A*I=A for every matrix A,I is a matrix with ones on the main diagonal and zeros elsewhere.) d.By taking out the x matrix, the equaiton will be: (A-λ*I)*x=0.If there exists (A-λ*I)^-1 then both sides can be multiplied by it, to obtain x = 0.But if A − λI is not invertible,the determinant of the (A-λ*I) will be 0 and this λ can be calculated. e.By changing λ to the calculated value in step d. to step a. the corresponding eigenvector x can be obtained.

Alternative way: If a matlab software is available the steps stated above can be done by program.

a.first enter the matrix that you want to calculate: A=[a,b,c;d,e,f;g,h,i].(use space to separate each row elements and semicolon to separate rows) the screen will show:

$ A= \left(\begin{array}{cccc}a&b\\e&f\end{array}\right) $.

b.type in roots(poly(A)). This command order matlab to calculate the roots of the determinant equation (equals to zero)of the orignals matrix which subtracted by the identity matrix. poly(A) is the characteristic equation of the matirx A For example:

$ det(A-\lambda I)=\left(\begin{array}{cccc}a-\lambda&b&c\\d&e-\lambda&f\\g&h&i-\lambda\end{array}\right)=0. $

The results is the eigenvalue to the matrix.the result of the command above will display the possible λ values.

c.Using the command m=rref(A-(one of the value calculated above)*eye(size(A))).eye(size(A)) command create a identity matrix that as same size as A. By the definition of A it can be derived that A*x-λ*x-0. this command actually row reduce the matrix defined by the euqaiton above to obtain the corresponding x matrix, which is the corresponding eigen vector.


Example:

$ A= \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right) $.

Solve for the eigenvalue/eigenvector.

By hand:

$ det(A-\lambda*I)= \left(\begin{array}{cccc}3-lambda&-3\\6&12-lambda\end{array}\right) =0. $

        (3-λ)*(12-λ)+18=0.
        λ^2-15λ+54=0
        λ=6 or 9


        $ \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right)*x=\lambda *x. $
        case 1: λ=5
        $ \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right) $$ \left(\begin{array}{cccc}x1\\x2\end{array}\right) $=$ \left(\begin{array}{cccc}6*x1\\6*x2\end{array}\right). $
        it can be derived that 3x1-3x2=6x1; 6x1+12x2=6x2,thus x1=-x2.Then 

$ x=\left(\begin{array}{cccc}1\\-1\end{array}\right) $

        case 2: λ=9
        $ \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right) $$ \left(\begin{array}{cccc}x1\\x2\end{array}\right) $=$ \left(\begin{array}{cccc}9*x1\\9*x2\end{array}\right) $.
        it can be derived that 3x1-3x2=9x1; 6x1+12x2=9x2,thus -2*x1=x2.Then $ x= \left(\begin{array}{cccc}1\\-2\end{array}\right) $

By Matlab:

        Type in A=[3 -3;6 12]
        Display:A=$ \left(\begin{array}{cccc}3&-3\\6&12\end{array}\right) $
        Type in roots(poly(A))
        Display: ans =
                      9
                      6
        Type in m=rref(A-(9)*eye(size(A)))
        Display: m =
                    1.0000    0.5000
                         0         0
        This row reduction form clearly shows that x1 is 2*x2
        
        Type in m=rref(A-(6)*eye(size(A)))
        This shows x1=x2


Relation to other math courses: MA266


Back to MA265, Fall 2011, Walther

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett