Line 21: Line 21:
 
</div>  
 
</div>  
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The univariate normal density is completely specified by two parameters; its mean ''&mu; '' and variance ''&sigma;<sup>2</sup>''. Eq.1 f<sub>x</sub> can be written as ''N(&mu;,&sigma;)  
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The univariate normal density is completely specified by two parameters; its mean ''&mu; '' and variance ''&sigma;<sup>2</sup>''. The function f<sub>x</sub> can be written as ''N(&mu;,&sigma;) which says that ''x'' is distributed normally with mean ''&mu;'' and variance ''&sigma;<sup>2</sup>''.
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; For the multivariate normal density in ''d'' dimensions, f<sub>x</sub> is written as  
+
For the multivariate normal density in ''d'' dimensions, f<sub>x</sub> is written as  
  
 
<div style="margin-left: 25em;">
 
<div style="margin-left: 25em;">
 
<math>f_x = \frac{1}{(2 \pi)^ \frac{d}{2} |\boldsymbol{\Sigma}|^\frac{1}{2}} \exp \left [- \frac{1}{2} (\mathbf{x} -\boldsymbol{\mu})^t\boldsymbol{\Sigma}^{-1} (\mathbf{x} -\boldsymbol{\mu}) \right] </math>  
 
<math>f_x = \frac{1}{(2 \pi)^ \frac{d}{2} |\boldsymbol{\Sigma}|^\frac{1}{2}} \exp \left [- \frac{1}{2} (\mathbf{x} -\boldsymbol{\mu})^t\boldsymbol{\Sigma}^{-1} (\mathbf{x} -\boldsymbol{\mu}) \right] </math>  
 +
</div>
 +
 +
where '''x''' is a ''d''-component column vector, '''&mu;''' is the ''d''-component mean vector, '''&Sigma;''' is the ''d''-by-''d'' covariance matrix, and '''|&Sigma;| and '''&Sigma;<sup>-1</sup>''' are its determinant and inverse respectively. Also, ('''x -&mu''')<sup>t</sup> denotes the transpose of ('''x -&mu''').
 +
 +
and
 +
 +
<div style="margin-left: 25em;">
 +
<math>\boldsymbol{\Sigma} = \mathcal{E} \left [(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t \right] = \int(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x})\, dx</math>
 
</div>
 
</div>

Revision as of 17:44, 4 April 2013

Discriminant Functions For The Normal Density


       Lets begin with the continuous univariate normal or Gaussian density.

$ f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] $


for which the expected value of x is

$ \mu = \mathcal{E}[x] =\int\limits_{-\infty}^{\infty} xp(x)\, dx $

and where the expected squared deviation or variance is

$ \sigma^2 = \mathcal{E}[(x- \mu)^2] =\int\limits_{-\infty}^{\infty} (x- \mu)^2 p(x)\, dx $

       The univariate normal density is completely specified by two parameters; its mean μ and variance σ2. The function fx can be written as N(μ,σ) which says that x is distributed normally with mean μ and variance σ2.

For the multivariate normal density in d dimensions, fx is written as

$ f_x = \frac{1}{(2 \pi)^ \frac{d}{2} |\boldsymbol{\Sigma}|^\frac{1}{2}} \exp \left [- \frac{1}{2} (\mathbf{x} -\boldsymbol{\mu})^t\boldsymbol{\Sigma}^{-1} (\mathbf{x} -\boldsymbol{\mu}) \right] $

where x is a d-component column vector, μ is the d-component mean vector, Σ is the d-by-d covariance matrix, and |Σ| and Σ-1 are its determinant and inverse respectively. Also, (x -&mu)t denotes the transpose of (x -&mu).

and

$ \boldsymbol{\Sigma} = \mathcal{E} \left [(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t \right] = \int(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x})\, dx $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett