Line 13: Line 13:
  
 
<div style="margin-left: 25em;">
 
<div style="margin-left: 25em;">
<math>/mu = \varepsilon[x] = \int\limits_{-/infty}^{/infty} xp(x)\, dx</math>         
+
<math>\mu = \mathcal{E}[x] = \int\limits_{-/infty}^{/infty} xp(x)\, dx</math>         
 
</div>
 
</div>

Revision as of 16:00, 4 April 2013

Discriminant Functions For The Normal Density


       Lets begin with the continuous univariate normal or Gaussian density.

$ f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] $


for which the expected value of x is

$ \mu = \mathcal{E}[x] = \int\limits_{-/infty}^{/infty} xp(x)\, dx $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett