(New page: = Discriminant Functions For The Normal Density = ----        Lets begin with the continuous univariate normal or Gaussian density. <div style="margin-left...)
 
Line 7: Line 7:
 
<div style="margin-left: 25em;">
 
<div style="margin-left: 25em;">
 
<math>f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] </math>         
 
<math>f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] </math>         
 +
</div>
 +
 +
 +
for which ''the expected value'' of ''x'' is
 +
 +
<div style="margin-left: 25em;">
 +
<math> /mu = \varepsilon \left [x \right] = \int\limits_{-/infty}^{/infty} xp(x)\, dx</math>       
 
</div>
 
</div>

Revision as of 15:58, 4 April 2013

Discriminant Functions For The Normal Density


       Lets begin with the continuous univariate normal or Gaussian density.

$ f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] $


for which the expected value of x is

$ /mu = \varepsilon \left [x \right] = \int\limits_{-/infty}^{/infty} xp(x)\, dx $

Alumni Liaison

EISL lab graduate

Mu Qiao