(2 intermediate revisions by the same user not shown)
Line 28: Line 28:
  
 
<math>
 
<math>
Given: Prob (0 < x < 2)
+
Prob (0 < x < 2) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})
</math>
+
 
+
<math>
+
= \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})
+
 
</math>
 
</math>
  
Line 48: Line 44:
  
 
<math>
 
<math>
Given: Prob (\frac{-5}{2} < x <\frac{1}{2})
+
Prob (-2.5 < x < .5) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})
</math>
+
 
+
<math>
+
= \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})
+
 
</math>
 
</math>
  
Line 63: Line 55:
 
</math>
 
</math>
  
No they are the same.
+
No, they are the same.
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Latest revision as of 04:48, 24 March 2013

[[Category:gaussian random variable

Practice Problem: Compare Probabilities for different Gaussians


A (one-dimensional) random variable X is normally distributed with mean equal to one and standard deviation equal to two. Another (one-dimensional) random variable Y is normally distributed with mean equal to minus one and standard deviation equal to three.

Is $ \text{Prob } ( 0 < X < 2) $ greater than $ \text{Prob } ( -2.5 < Y < 0.5) \text{ ?} $ Explain.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ Given: \mu = 1\sigma = 2 $

$ Prob (0 < x < 2) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) $

$ = \Phi(\frac{2-1}{2}) - \Phi(\frac{0-1}{2}) $

$ =\Phi(\frac{1}{2}) - \Phi(\frac{1}{2}) = 0 $

$ Given: \mu = -1 \sigma = 3 $

$ Prob (-2.5 < x < .5) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) $

$ = \Phi(\frac{.5+1}{3}) - \Phi(\frac{-2.5+1}{3}) $

$ =\Phi(\frac{1}{2}) - \Phi(\frac{1}{2}) = 0 $

No, they are the same.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch