Line 24: Line 24:
 
===Answer 1===
 
===Answer 1===
 
<math>
 
<math>
\mu = 1\sigma = 2
+
Given: \mu = 1\sigma = 2
 
</math>
 
</math>
  
 
<math>
 
<math>
Prob (0 < x < 2)
+
Given: Prob (0 < x < 2)
 
</math>
 
</math>
  
Line 44: Line 44:
  
 
<math>
 
<math>
\mu = -1  \sigma = 3
+
Given: \mu = -1  \sigma = 3
 
</math>
 
</math>
  
 
<math>
 
<math>
Prob (\frac{-5}{2} < x <\frac{1}{2})
+
Given: Prob (\frac{-5}{2} < x <\frac{1}{2})
 
</math>
 
</math>
  

Revision as of 14:29, 22 March 2013

[[Category:gaussian random variable

Practice Problem: Compare Probabilities for different Gaussians


A (one-dimensional) random variable X is normally distributed with mean equal to one and standard deviation equal to two. Another (one-dimensional) random variable Y is normally distributed with mean equal to minus one and standard deviation equal to three.

Is $ \text{Prob } ( 0 < X < 2) $ greater than $ \text{Prob } ( -2.5 < Y < 0.5) \text{ ?} $ Explain.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ Given: \mu = 1\sigma = 2 $

$ Given: Prob (0 < x < 2) $

$ = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) $

$ = \Phi(\frac{2-1}{2}) - \Phi(\frac{0-1}{2}) $

$ =\Phi(\frac{1}{2}) - \Phi(\frac{1}{2}) = 0 $

$ Given: \mu = -1 \sigma = 3 $

$ Given: Prob (\frac{-5}{2} < x <\frac{1}{2}) $

$ = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) $

$ = \Phi(\frac{.5+1}{3}) - \Phi(\frac{-2.5+1}{3}) $

$ =\Phi(\frac{1}{2}) - \Phi(\frac{1}{2}) = 0 $

No they are the same.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva