(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:ECE302Spring2013Boutin]] [[Category:ECE]] [[Category:ECE302]] [[Category:probability]] [[Category:proofs]] [[Category:DeMorgan's Second Law]]
+
<br><br>  
+
<br>
+
  
 
= Alternative Proof for DeMorgan's Second Law  =
 
= Alternative Proof for DeMorgan's Second Law  =
Line 7: Line 5:
 
By Oluwatola Adeola  
 
By Oluwatola Adeola  
  
[https://www.projectrhea.org/rhea/index.php/ECE302 <font color="#0066cc">ECE 302,</font>] [https://www.projectrhea.org/rhea/index.php/List_of_Course_Wikis#2013 <font color="#0066cc">Spring 2013</font>], [https://www.projectrhea.org/rhea/index.php/User:Mboutin Professor Boutin]  
+
[[ECE302|<font color="#0066cc">ECE 302,</font>]] [[List of Course Wikis#2013|<font color="#0066cc">Spring 2013</font>]], [[User:Mboutin|Professor Boutin]]  
  
<br>
+
<br>  
  
 
During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.  
 
During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.  
  
 
&nbsp;  
 
&nbsp;  
 
+
DeMorgan's Second Law:&nbsp; <math class = "center">{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;  
DeMorgan's Second Law:&nbsp; <math>{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;  
+
  
 
Proof:  
 
Proof:  
 +
#<math class = "center">
 +
\begin{align}
 +
x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}} \\
 +
& \Rightarrow \forall{n}, x \in {S_n} \\
 +
& \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\
 +
& \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}
 +
\end{align}
 +
</math>&nbsp;
 +
#<math class = "center">{(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c</math>
 +
#<math class = "center">
 +
\begin{align}
 +
x \notin {\bigcup^{n}{(S_n)}^{c}} & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\
 +
& \Rightarrow \forall{n}, x \in {S_n} \\
 +
& \Rightarrow x \in {\bigcup^{n}{S_n}} \\
 +
& \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}
 +
\end{align}
 +
</math>&nbsp;
 +
#<math class = "center>{(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c</math>
 +
#By lines&nbsp;2 and 4:  &nbsp;<math class = "center">{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math>&nbsp;<span class="texhtml">&nbsp;</span>&nbsp;
 +
 +
 +
 +
----
 +
Formatting help:
 +
<math>
 +
\begin{align}
 +
x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow  x \in {\bigcap^{n}{S_n}}\\
 +
&\Rightarrow \forall{n}, x \in {S_n}
 +
\end{align}
 +
</math>
 +
  
#If&nbsp;&nbsp; &nbsp;<math>x \notin {(\bigcap^{n}{S_n})}^{c}</math>
+
Example of alignments: <math>x+y</math> <math>x_3^7+y </math> <math class="inline">x_3^7+y</math>
#<math>\Rightarrow x \in {\bigcap^{n}{S_n}}</math>
+
----
#<math>\Rightarrow \forall{n}, x \in {S_n}</math>&nbsp;
+
<br>[[2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
#<math>\Rightarrow \forall{n}, x \notin {(S_n)}^{c}</math>
+
#<math>\Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}</math>
+
#By lines 1 through&nbsp;5: <math>x \notin {(\bigcap^{n}{S_n})}^{c} \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}}</math>  
+
#By line 6; <math>{(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c</math>  
+
#If <math>x \notin {\bigcup^{n}{(S_n)}^{c}}</math>  
+
#<math>\Rightarrow \forall{n}, x \notin {(S_n)}^{c}</math>
+
#<math>\Rightarrow \forall{n}, x \in {S_n}</math>
+
#<math>\Rightarrow x \in {\bigcup^{n}{S_n}}</math>
+
#<math>\Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}</math>
+
#By lines&nbsp;8 through 12:<math>x \notin {\bigcup^{n}{(S_n)}^{c}} \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c}</math>
+
#By line 13:<math>{(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c</math>
+
#By lines&nbsp;7 and 15 <math>{(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c</math><br>&nbsp;<span class="texhtml">&nbsp;</span>&nbsp;
+
  
<br>[[2013 Spring ECE 302 Boutin|Back to 2013 Spring ECE 302 Boutin]]
+
[[Category:ECE302Spring2013Boutin]] [[Category:ECE]] [[Category:ECE302]] [[Category:Probability]] [[Category:Proofs]] [[Category:DeMorgan's_Second_Law]]

Latest revision as of 11:01, 19 March 2013



Alternative Proof for DeMorgan's Second Law

By Oluwatola Adeola

ECE 302, Spring 2013, Professor Boutin


During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.

  DeMorgan's Second Law:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $ 

Proof:

  1. $ \begin{align} x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}} \\ & \Rightarrow \forall{n}, x \in {S_n} \\ & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\ & \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} \end{align} $ 
  2. $ {(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c $
  3. $ \begin{align} x \notin {\bigcup^{n}{(S_n)}^{c}} & \Rightarrow \forall{n}, x \notin {(S_n)}^{c} \\ & \Rightarrow \forall{n}, x \in {S_n} \\ & \Rightarrow x \in {\bigcup^{n}{S_n}} \\ & \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} \end{align} $ 
  4. $ {(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c $
  5. By lines 2 and 4:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $   



Formatting help: $ \begin{align} x \notin {(\bigcap^{n}{S_n})}^{c} & \Rightarrow x \in {\bigcap^{n}{S_n}}\\ &\Rightarrow \forall{n}, x \in {S_n} \end{align} $


Example of alignments: $ x+y $ $ x_3^7+y $ $ x_3^7+y $



Back to 2013 Spring ECE 302 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang