Line 1: Line 1:
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:probability]] [[Category:problem solving]]
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:probability]] [[Category:problem solving]]
  
1.    [[Category:LTI systems]]
+
1.     
 +
 
 +
[[Category:LTI systems]]
  
 
Linear: <math>y[n]=x[n]+3x[n-1]</math>
 
Linear: <math>y[n]=x[n]+3x[n-1]</math>
Line 21: Line 23:
 
Time Invariant: <math>y[n]=x[n-2]^3</math>
 
Time Invariant: <math>y[n]=x[n-2]^3</math>
  
2. [[Category:convolution]]
+
2.  
 +
 
 +
[[Category:convolution]]
 +
 
  
 
[[Image:Graphical_Convolution.jpg]]
 
[[Image:Graphical_Convolution.jpg]]
  
3. [[Category:period]]
+
 
 +
3.  
 +
 
 +
[[Category:period]]
 +
 
 
<math>y(t)=cos(4t)</math>
 
<math>y(t)=cos(4t)</math>
 
The period is <math>pi/2</math>
 
The period is <math>pi/2</math>
  
 
[[Bonus_point_1_ECE301_Spring2013|Back to first bonus point opportunity, ECE301 Spring 2013]]
 
[[Bonus_point_1_ECE301_Spring2013|Back to first bonus point opportunity, ECE301 Spring 2013]]

Latest revision as of 11:52, 11 February 2013


1.

Linear: $ y[n]=x[n]+3x[n-1] $ Non Linear: $ y[n]=x[n]^2+x[n] $

Causal: $ y[t]=(1/3)x[t] $ Non Causal: $ y[n]=x[n+5]+x[n-2] $

With Memory: $ y[n]=x[n-1]^2 $ Without Memory: $ y[n]=sin(x[n]) $

Invertible: $ y[t]=16x[t] $ Non Invertible: $ y[t]=|x[t]| $

Stable: $ y[n]=x[n^2]+x[n-1] $ Unstable: $ y[n]=n!x[n] $

Time Variant: $ y[n]=x[n]/(n^2+1) $ Time Invariant: $ y[n]=x[n-2]^3 $

2.Graphical Convolution.jpg


3.

$ y(t)=cos(4t) $ The period is $ pi/2 $

Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood