Line 1: Line 1:
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:probability]] [[Category:problem solving]]
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:probability]] [[Category:problem solving]]
  
1. [[Category:LTI systems]]
+
1.     [[Category:LTI systems]]
  
 
Linear: <math>y[n]=x[n]+3x[n-1]</math>
 
Linear: <math>y[n]=x[n]+3x[n-1]</math>
Line 22: Line 22:
  
 
2. [[Category:convolution]]
 
2. [[Category:convolution]]
 +
 
[[Image:Graphical_Convolution.jpg]]
 
[[Image:Graphical_Convolution.jpg]]
 +
 
3. [[Category:period]]
 
3. [[Category:period]]
 
<math>y(t)=cos(4t)</math>
 
<math>y(t)=cos(4t)</math>

Revision as of 11:49, 11 February 2013


1.

Linear: $ y[n]=x[n]+3x[n-1] $ Non Linear: $ y[n]=x[n]^2+x[n] $

Causal: $ y[t]=(1/3)x[t] $ Non Causal: $ y[n]=x[n+5]+x[n-2] $

With Memory: $ y[n]=x[n-1]^2 $ Without Memory: $ y[n]=sin(x[n]) $

Invertible: $ y[t]=16x[t] $ Non Invertible: $ y[t]=|x[t]| $

Stable: $ y[n]=x[n^2]+x[n-1] $ Unstable: $ y[n]=n!x[n] $

Time Variant: $ y[n]=x[n]/(n^2+1) $ Time Invariant: $ y[n]=x[n-2]^3 $

2.Graphical Convolution.jpg

3. $ y(t)=cos(4t) $ The period is $ pi/2 $

Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva