Line 5: Line 5:
  
 
Linear example    <math>y[n] = 54x[n]</math>, <math>h[n] = 62x[n]</math>, <math>y[n] + h[n] = 54x[n] + 62x[n]</math>
 
Linear example    <math>y[n] = 54x[n]</math>, <math>h[n] = 62x[n]</math>, <math>y[n] + h[n] = 54x[n] + 62x[n]</math>
 +
 
Non Linear example    <math>y(t) =x^3(t)</math>, <math>h(t) = x^3(t)</math>, <math>y(t) + h(t) = (x(t)+x(t))^2</math> =\= <math>x^2(t) +x^2(t)</math>  
 
Non Linear example    <math>y(t) =x^3(t)</math>, <math>h(t) = x^3(t)</math>, <math>y(t) + h(t) = (x(t)+x(t))^2</math> =\= <math>x^2(t) +x^2(t)</math>  
  
Line 21: Line 22:
 
Invertible example  <math>y(t)=5x(t)</math>
 
Invertible example  <math>y(t)=5x(t)</math>
 
Nonivertible example  <math>y(t)=x^4(t)</math>
 
Nonivertible example  <math>y(t)=x^4(t)</math>
 
  
 
Stable and Nonstable
 
Stable and Nonstable
Line 29: Line 29:
  
 
Time variant and Time invariant
 
Time variant and Time invariant
 
  
 
Time variant example  <math>y(t)=3tx(t)</math>  
 
Time variant example  <math>y(t)=3tx(t)</math>  
Line 37: Line 36:
  
 
Part 1:[[Image:Convol_1.jpg]]
 
Part 1:[[Image:Convol_1.jpg]]
 +
 
Part 2:[[Image:Convol_2.jpg]]
 
Part 2:[[Image:Convol_2.jpg]]
 +
 
Part 3:[[Image:Convol_3.jpg]]
 
Part 3:[[Image:Convol_3.jpg]]
 +
 
Part 4:[[Image:Convol_4.jpg]]
 
Part 4:[[Image:Convol_4.jpg]]
  

Revision as of 15:36, 10 February 2013

EXTRA CREDIT 1. Linear and Non Linear

Linear example $ y[n] = 54x[n] $, $ h[n] = 62x[n] $, $ y[n] + h[n] = 54x[n] + 62x[n] $

Non Linear example $ y(t) =x^3(t) $, $ h(t) = x^3(t) $, $ y(t) + h(t) = (x(t)+x(t))^2 $ =\= $ x^2(t) +x^2(t) $

Causal and Non Causal

Causal example $ y[n]=70x[n-1] $ Non Causal example $ y[n]=76x[n+1] $

Memory and Memoryless

Memory example $ y[n]=x[n]+x[n-1] $ Memoryless example $ y[n]=36x[n] $

Invertible and noninvertible

Invertible example $ y(t)=5x(t) $ Nonivertible example $ y(t)=x^4(t) $

Stable and Nonstable

Stable example $ y(t)=sin(3t) $ Nonstable example $ y(t)=4e^3x(t) $

Time variant and Time invariant

Time variant example $ y(t)=3tx(t) $ Time Invariant example $ y(t)=3x(t) $

2.

Part 1:Convol 1.jpg

Part 2:Convol 2.jpg

Part 3:Convol 3.jpg

Part 4:Convol 4.jpg


3.Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang