Line 36: Line 36:
 
2. [[Category:convolution]]
 
2. [[Category:convolution]]
  
 
+
Part 1:[[Image:Convol_1.jpg]]
 +
Part 2:[[Image:Convol_2.jpg]]
 +
Part 3:[[Image:Convol_3.jpg]]
 +
Part 4:[[Image:Convol_4.jpg]]
  
  

Revision as of 15:33, 10 February 2013

EXTRA CREDIT 1. Linear and Non Linear

Linear example $ y[n] = 54x[n] $, $ h[n] = 62x[n] $, $ y[n] + h[n] = 54x[n] + 62x[n] $ Non Linear example $ y(t) =x^3(t) $, $ h(t) = x^3(t) $, $ y(t) + h(t) = (x(t)+x(t))^2 $ =\= $ x^2(t) +x^2(t) $

Causal and Non Causal

Causal example $ y[n]=70x[n-1] $ Non Causal example $ y[n]=76x[n+1] $

Memory and Memoryless

Memory example $ y[n]=x[n]+x[n-1] $ Memoryless example $ y[n]=36x[n] $

Invertible and noninvertible

Invertible example $ y(t)=5x(t) $ Nonivertible example $ y(t)=x^4(t) $


Stable and Nonstable

Stable example $ y(t)=sin(3t) $ Nonstable example $ y(t)=4e^3x(t) $

Time variant and Time invariant


Time variant example $ y(t)=3tx(t) $ Time Invariant example $ y(t)=3x(t) $

2.

Part 1:Convol 1.jpg Part 2:Convol 2.jpg Part 3:Convol 3.jpg Part 4:Convol 4.jpg


3.Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett