Line 1: | Line 1: | ||
− | |||
=QE2012_AC-3_ECE580-4= | =QE2012_AC-3_ECE580-4= | ||
Line 5: | Line 4: | ||
− | + | <br> Solution: | |
+ | |||
+ | We can transfer the problem to the following standard form: | ||
+ | <span class="texhtml">''Mnimize''</span>''' <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>''' | ||
+ | <span class="texhtml">''Sbject to''</span>''' <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>''' | ||
+ | <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span> | ||
+ | <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span> | ||
+ | <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math> | ||
+ | |||
+ | We form the corresponding tableau for the problem | ||
+ | <math>\begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | -2 & 1& 1 &0& 0& 2 \\ | ||
+ | -1& 1& 0 &1 &0 &3\\ | ||
+ | 1 &0& 0& 0& 1& 3\\ | ||
+ | -1& -2 &0& 0& 0& 0 | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> = − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis. | ||
+ | |||
+ | After computing the ratios, we pivot about the (1,2) element of the tableau to obtain | ||
+ | <math>\begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | -2 & 1& 1 &0& 0& 2 \\ | ||
+ | 1& 0& -1 &1 &0 &1\\ | ||
+ | 1 &0& 0& 0& 1& 3\\ | ||
+ | -5& 0 &2& 0& 0& 4 | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | Similarly, we pivot about the (2,1) element to obtain | ||
+ | <math>\begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | 0 & 1& -1 &2& 0& 4 \\ | ||
+ | 1& 0& -1 &1 &0 &1\\ | ||
+ | 0 &0& 1& -1& 1& 2\\ | ||
+ | 0& 0 &-3& 5& 0& 9 | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | Similarly, we pivot about the (3,3) element to obtain | ||
+ | <math>\begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | 0 & 1& 0 &1& 1& 6 \\ | ||
+ | 1& 0& 0 &0 &1 &3\\ | ||
+ | 0 &0& 1& -1& 1& 2\\ | ||
+ | 0& 0 &0& 2& 3& 15 | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | Therefore, <span class="texhtml">''x''<sub>1</sub> = 3,</span> <span class="texhtml">''x''<sub>2</sub> = 6,</span> maximize the function. | ||
+ | |||
+ | Solution 2: | ||
+ | |||
+ | The standard form for this problem is | ||
+ | <span class="texhtml">''Mnimize''</span>''' <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>''' | ||
+ | <span class="texhtml">''Sbject to''</span>''' <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>''' | ||
+ | <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span> | ||
+ | <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span> | ||
+ | <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math> | ||
+ | |||
+ | <math>\begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | -2 & 1& 1 &0& 0& 2 \\ | ||
+ | -1& 1& 0 &1 &0 &3\\ | ||
+ | 1 &0& 0& 0& 1& 3\\ | ||
+ | -1& -2 &0& 0& 0& 0 | ||
+ | \end{matrix}\Rightarrow | ||
+ | |||
+ | \begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | -2 & 1& 1 &0& 0& 2 \\ | ||
+ | 1& 0& -1 &1 &0 &1\\ | ||
+ | 1 &0& 0& 0& 1& 3\\ | ||
+ | -5& 0 &2& 0& 0& 4 | ||
+ | \end{matrix} | ||
+ | \Rightarrow | ||
+ | \begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | 0 & 1& -1 &2& 0& 4 \\ | ||
+ | 1& 0& -1 &1 &0 &1\\ | ||
+ | 0 &0& 1& -1& 1& 2\\ | ||
+ | 0& 0 &-3& 5& 0& 9 | ||
+ | \end{matrix} | ||
+ | \Rightarrow | ||
+ | \begin{matrix} | ||
+ | a_1 & a_2 & a_3 & a_4 & a_5 & b \\ | ||
+ | 0 & 1& 0 &1& 1& 6 \\ | ||
+ | 1& 0& 0 &0 &1 &3\\ | ||
+ | 0 &0& 1& -1& 1& 2\\ | ||
+ | 0& 0 &0& 2& 3& 15 | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | From the last tableau, we can see that <math>\begin{bmatrix} | ||
+ | x^{1} = 3\\ x^{2} = 6 | ||
+ | \end{bmatrix}</math> | ||
+ | maximizes the object function. The maximum value is 15 | ||
+ | |||
+ | <font color="#0000FF "><span style="font-size: 19px;"> | ||
+ | <math>\color{blue} | ||
+ | \text{ It should be noted that, } | ||
+ | \begin{bmatrix} | ||
+ | x^{1} = 3\\ x^{2} = 6 | ||
+ | \end{bmatrix} \text{actually minimizes the standard form,} | ||
+ | </math> | ||
+ | <math>\color{blue} | ||
+ | \text{which equivalently maximizes the original problem} | ||
+ | </math> | ||
+ | </span></font> | ||
Revision as of 05:17, 26 January 2013
QE2012_AC-3_ECE580-4
Solution:
We can transfer the problem to the following standard form: Mnimize − x1 − 2x2 Sbject to − 2x1 + x2 + x3 = 2 − x1 + x2 + x4 = 3 x1 + x5 = 3 $ x_1, x_2, x_3, x_4, x_5 \ge 0. $
We form the corresponding tableau for the problem $ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ -1& 1& 0 &1 &0 &3\\ 1 &0& 0& 0& 1& 3\\ -1& -2 &0& 0& 0& 0 \end{matrix} $ Since it is already in canonical form. Because r2 = − 7, we bring a2 into the basis.
After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
$ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ 1& 0& -1 &1 &0 &1\\ 1 &0& 0& 0& 1& 3\\ -5& 0 &2& 0& 0& 4 \end{matrix} $
Similarly, we pivot about the (2,1) element to obtain
$ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& -1 &2& 0& 4 \\ 1& 0& -1 &1 &0 &1\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &-3& 5& 0& 9 \end{matrix} $
Similarly, we pivot about the (3,3) element to obtain
$ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& 0 &1& 1& 6 \\ 1& 0& 0 &0 &1 &3\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &0& 2& 3& 15 \end{matrix} $
Therefore, x1 = 3, x2 = 6, maximize the function.
Solution 2:
The standard form for this problem is
Mnimize − x1 − 2x2 Sbject to − 2x1 + x2 + x3 = 2 − x1 + x2 + x4 = 3 x1 + x5 = 3 $ x_1, x_2, x_3, x_4, x_5 \ge 0. $
$ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ -1& 1& 0 &1 &0 &3\\ 1 &0& 0& 0& 1& 3\\ -1& -2 &0& 0& 0& 0 \end{matrix}\Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ 1& 0& -1 &1 &0 &1\\ 1 &0& 0& 0& 1& 3\\ -5& 0 &2& 0& 0& 4 \end{matrix} \Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& -1 &2& 0& 4 \\ 1& 0& -1 &1 &0 &1\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &-3& 5& 0& 9 \end{matrix} \Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& 0 &1& 1& 6 \\ 1& 0& 0 &0 &1 &3\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &0& 2& 3& 15 \end{matrix} $
From the last tableau, we can see that $ \begin{bmatrix} x^{1} = 3\\ x^{2} = 6 \end{bmatrix} $ maximizes the object function. The maximum value is 15
$ \color{blue} \text{ It should be noted that, } \begin{bmatrix} x^{1} = 3\\ x^{2} = 6 \end{bmatrix} \text{actually minimizes the standard form,} $ $ \color{blue} \text{which equivalently maximizes the original problem} $