Line 19: Line 19:
 
<math>A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]</math>
 
<math>A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]</math>
  
<math>B=\left[\begin{array}{cccccc}1&0&0&0&-1&2\\0&1&0&0&3&5\\0&0&0&1&-4&2\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\right]</math>
+
<math>B=\left[\begin{array}{ccccc}1&2&0&0&1\\0&0&1&2&3\\0&0&0&0&0\end{array}\right]</math>
 +
 
 +
<math>C=\left[\begin{array}{cccccc}1&0&0&0&-1&2\\0&1&0&0&3&5\\0&0&0&1&-4&2\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\right]</math>

Revision as of 12:37, 14 December 2012

Echelon form of a matrix

A m X n matrix is in row echelon form if it satisfies properties 1, 2, and 3. Furthermore A m X n matrix is in reduced row echelon form if it satisfies the following properties:

1. If there are any zero rows, they must be at the bottom of the matrix.

2. The first nonzero entry from the left of a nonzero row is a 1, which is also called the leading one of that row.

3. The leading one for each nonzero row appears to the right and below any leading ones in the previous rows.

4. For a column with a leading one, the other entries in that column are zero.

A similar definition can be made for reduced column echelon form and column echelon form.

Example

The following matrices are in reduced row echelon form because they follow properties 1, 2, 3, and 4.

$ A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] $

$ B=\left[\begin{array}{ccccc}1&2&0&0&1\\0&0&1&2&3\\0&0&0&0&0\end{array}\right] $

$ C=\left[\begin{array}{cccccc}1&0&0&0&-1&2\\0&1&0&0&3&5\\0&0&0&1&-4&2\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\right] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood