Line 9: | Line 9: | ||
<br> | <br> | ||
<br> | <br> | ||
− | <math>A = \left(\begin{array}{ | + | <math>A = \left(\begin{array}{cc}4&3\\3&2\end{array}\right)</math> |
<br> | <br> | ||
− | <math>A^{-1} = \left(\begin{array}{ | + | <math>A^{-1} = \left(\begin{array}{cc}-2&3\\3&-4\end{array}\right)</math> |
<br> | <br> | ||
− | <math>AA^{-1} = \left(\begin{array}{ | + | <math>AA^{-1} = \left(\begin{array}{cc}4&3\\3&2\end{array}\right)</math><math>\left(\begin{array}{cc}-2&3\\3&-4\end{array}\right) = </math> <math>\left(\begin{array}{cc}1&0\\0&1\end{array}\right)</math> |
<br> | <br> | ||
and | and | ||
<br> | <br> | ||
− | <math>A^{-1} = \left(\begin{array}{ | + | <math>A^{-1} = \left(\begin{array}{cc}-2&3\\3&-4\end{array}\right)</math><math>\left(\begin{array}{cc}4&3\\3&2\end{array}\right) = </math><math>\left(\begin{array}{cc}1&0\\0&1\end{array}\right)</math> |
---- | ---- | ||
Line 51: | Line 51: | ||
<h4> 1. Shortcut for determining the inverse of a 2 x 2 matrix </h4> | <h4> 1. Shortcut for determining the inverse of a 2 x 2 matrix </h4> | ||
− | <p> If <math>A = \left(\begin{array}{ | + | <p> If <math>A = \left(\begin{array}{cc}a&b\\c&d\end{array}\right)</math> then the inverse of matrix A can be found using: |
<br> | <br> | ||
− | <math>A^{-1} = \frac{1}{detA}\left(\begin{array}{ | + | <math>A^{-1} = \frac{1}{detA}\left(\begin{array}{cc}d&-b\\-c&a\end{array}\right) = \frac{1}{ad - bc}\left(\begin{array}{cc}d&-b\\-c&a\end{array}\right)</math> |
</p> | </p> | ||
Line 67: | Line 67: | ||
<br> | <br> | ||
− | <math>A = \left(\begin{array}{ | + | <math>A = \left(\begin{array}{cc}1&2\\3&4\end{array}\right)</math> |
<br> | <br> | ||
Line 75: | Line 75: | ||
<br> | <br> | ||
− | <math>A^{-1} = \frac{1}{-2}\left(\begin{array}{ | + | <math>A^{-1} = \frac{1}{-2}\left(\begin{array}{cc}4&-2\\-3&1\end{array}\right)</math> |
<br> | <br> | ||
− | <math>A^{-1} = \left(\begin{array}{ | + | <math>A^{-1} = \left(\begin{array}{cc}-2&1\\\frac{3}{2}&\frac{-1}{2}\end{array}\right)</math> |
</p> | </p> | ||
Line 95: | Line 95: | ||
<p> <b>Example.</b> | <p> <b>Example.</b> | ||
+ | |||
Find A<sup>-1</sup> of | Find A<sup>-1</sup> of | ||
− | <math>A = \left(\begin{array}{ | + | <br> |
+ | |||
+ | <math>A = \left(\begin{array}{cc}1&2\\3&4\end{array}\right)</math> | ||
+ | |||
Revision as of 07:30, 10 December 2012
Contents
Inverse of a Matrix
An n x n matrix A is said to have an inverse provided there exists an n x n matrix B such that AB = BA = In. We call B the inverse of A and denote it as A-1. Thus, AA-1 = A-1A = In. In this case, A is also called nonsingular.
Example.
$ A = \left(\begin{array}{cc}4&3\\3&2\end{array}\right) $
$ A^{-1} = \left(\begin{array}{cc}-2&3\\3&-4\end{array}\right) $
$ AA^{-1} = \left(\begin{array}{cc}4&3\\3&2\end{array}\right) $$ \left(\begin{array}{cc}-2&3\\3&-4\end{array}\right) = $ $ \left(\begin{array}{cc}1&0\\0&1\end{array}\right) $
and
$ A^{-1} = \left(\begin{array}{cc}-2&3\\3&-4\end{array}\right) $$ \left(\begin{array}{cc}4&3\\3&2\end{array}\right) = $$ \left(\begin{array}{cc}1&0\\0&1\end{array}\right) $
Theorem 1
The inverse of a matrix, if it exists, is unique
Theorem 2
If A and B are both nonsingular n x n matrices (i.e. invertible), then AB is nonsingular and (AB)-1 = B-1A-1.
Corollary 1
If A1, A2, ..., Ar are n x n nonsingular matrices, then A1A2...Ar is nonsingular an (A1A2...Ar)-1 = Ar-1Ar-1-1...A1-1.
Theorem 3
If A is a nonsingular matrix, then A-1 is nonsingular and (A-1)-1 = A.
Theorem 4
If A is a nonsingular matrix, then AT is nonsingular and (A-1)T = (AT)-1.
Methods for determining the inverse of a matrix
1. Shortcut for determining the inverse of a 2 x 2 matrix
If $ A = \left(\begin{array}{cc}a&b\\c&d\end{array}\right) $ then the inverse of matrix A can be found using:
$ A^{-1} = \frac{1}{detA}\left(\begin{array}{cc}d&-b\\-c&a\end{array}\right) = \frac{1}{ad - bc}\left(\begin{array}{cc}d&-b\\-c&a\end{array}\right) $
Example
$ A = \left(\begin{array}{cc}1&2\\3&4\end{array}\right) $
$ detA = ad - bc = 1 \times 4 - 2 \times 3 = -2 $
$ A^{-1} = \frac{1}{-2}\left(\begin{array}{cc}4&-2\\-3&1\end{array}\right) $
$ A^{-1} = \left(\begin{array}{cc}-2&1\\\frac{3}{2}&\frac{-1}{2}\end{array}\right) $
2. Augmented Matrix Method (Can be used for any n x n matrix)
Use Gauss-Jordan Elimination to transform [ A | I ] into [ I | A-1 ].
$ \left(\begin{array}{ccc|ccc}a&b&c&1&0&0\\d&e&f&0&1&0\\g&h&i&0&0&1\end{array}\right) $
Example.
Find A-1 of
$ A = \left(\begin{array}{cc}1&2\\3&4\end{array}\right) $