Line 4: | Line 4: | ||
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math> | <math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math> | ||
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math> | <math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math> | ||
+ | <math>B=\left[\begin{array}{cccc}1&2\\3&4\end{array}\right]</math> | ||
+ | |||
Given the matrix A, B, and C, | Given the matrix A, B, and C, |
Revision as of 09:29, 14 November 2012
Matrix Multiplication and coordinate systems:
$ A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right] $
$ B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right] $
$ B=\left[\begin{array}{cccc}1&2\\3&4\end{array}\right] $
Given the matrix A, B, and C,