Line 1: Line 1:
 
'''Matrix Multiplication and coordinate systems:'''
 
'''Matrix Multiplication and coordinate systems:'''
  
Given the matrix A, B, and C,
+
 
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
 
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math>
 
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math>
 +
 +
Given the matrix A, B, and C,

Revision as of 09:27, 14 November 2012

Matrix Multiplication and coordinate systems:


$ A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right] $ $ B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right] $

Given the matrix A, B, and C,

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett