Line 22: Line 22:
 
| align="right" style="padding-right: 2em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || <math> \text{if}\ z=a+ib,\ \text{for}\ a,\ b \in {\mathbb R},\ \text{then} \ \bar{z}=a-ib </math>
 
| align="right" style="padding-right: 2em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || <math> \text{if}\ z=a+ib,\ \text{for}\ a,\ b \in {\mathbb R},\ \text{then} \ \bar{z}=a-ib </math>
 
|-
 
|-
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = \sqrt{ z \bar{z} } </math>
 
|-  
 
|-  
 
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
 
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>

Revision as of 14:01, 14 October 2012

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Complex Number Identities and Formulas (info)
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers' imaginary number $ j=\sqrt{-1}\ $
(info) conjugate of a complex number $ \text{if}\ z=a+ib,\ \text{for}\ a,\ b \in {\mathbb R},\ \text{then} \ \bar{z}=a-ib $
(info) magnitude of a complex number $ \| z \| = \sqrt{ z \bar{z} } $
(info) magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
(info) magnitude of a complex number $ \| a+ib \| = \sqrt{a^2+b^2},\ \text{for}\ a,b\in {\mathbb R} $
(info) magnitude of a complex number $ \| r e^{i \theta} \| = r,\ \text{for}\ r,\theta\in {\mathbb R} $
Complex Number Operations
addition $ (a+ib)+(c+id)=(a+c) + i (b+d) \ $
multiplication $ (a+ib) (c+id)=(ac-bd) + i (ad+bc) \ $
multiplication in polar form $ \left( r_1 (\cos \theta_1 + i \sin \theta_1) \right) \left( r_2 (\cos \theta_2 + i \sin \theta_2) \right)= r_1 r_2 \left( \cos (\theta_1+\theta_2)+i \sin (\theta_1-\theta_2) \right)\ $
division $ \frac{a+ib} {c+id}=\frac{ac+bd} {c^2+d^2}+ i \frac{bc-ad} {c^2+d^2} \ $
division in polar form $ \frac{ r_1 (\cos \theta_1 + i \sin \theta_1)}{ r_2 (\cos \theta_2 + i \sin \theta_2) }= \frac{r_1}{ r_2} \left( \cos (\theta_1-\theta_2)+i \sin (\theta_1+\theta_2) \right)\ $
exponentiation $ i^n =\left\{ \begin{array}{ll}1,& \text{when }n\equiv 0\mod 4 \\ i,& \text{when }n\equiv 1\mod 4 \\-1,& \text{when }n\equiv 2\mod 4 \\-i,& \text{when }n\equiv 3\mod 4 \end{array} \right. \ $
Euler's Formula and Related Equalities (info)
(info) Euler's formula $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $
A really cute formula $ e^{i\pi}=-1 \ $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $
Other Formulas
De Moivre's theorem $ \left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right).\, $
Root of a complex number $ \left( r (\cos x+i\sin x) \right)^{\frac{1}{n}}=r^{\frac{1}{n}} \cos\left(\frac{x+2 k \pi}{n}\right) +i\sin\left(\frac{x+2 k \pi}{n} \right), k=0,1,\ldots, n-1.\, $

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang