Line 1: | Line 1: | ||
− | + | [[Category:ECE]] | |
− | + | [[Category:QE]] | |
− | + | [[Category:CNSIP]] | |
− | + | [[Category:problem solving]] | |
− | + | [[Category:communication networks signal and image processing]] | |
+ | = [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS), Question 1, August 2011= | ||
---- | ---- | ||
+ | ==Question== | ||
+ | '''Part 1. ''' 25 pts | ||
− | |||
− | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Consider the optimization problem, }</math></span></font> | |
− | + | <math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math> | |
− | <math> | + | <math>\text{subject to } x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font> |
− | + | '''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br> | |
− | + | ||
− | <math>\ | + | <math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </math> | + | |
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
+ | :'''Click [[ECE-QE_CS1-2011_solusion-1|here]] to view student [[ECE-QE_CS1-2011_solusion-1|answers and discussions]]''' | ||
---- | ---- | ||
+ | '''Part 2.''' | ||
− | |||
− | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Use the simplex method to solve the problem, }</math></span></font> | |
− | + | ||
− | < | + | <span class="texhtml">maximize ''x''<sub>1</sub> + ''x''<sub>2</sub></span> |
− | + | ||
− | </ | + | |
− | <math>\ | + | <math>\text{subject to } x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>''' <math>x_{1}+x_{2}\leq6</math>''' |
− | + | <math>x_{1},-x_{2}\geq0.</math> | |
− | + | ||
− | </math | + | |
− | + | ||
− | |||
− | |||
− | |||
+ | :'''Click [[ECE-QE_CS1-2011_solusion-2|here]] to view student [[ECE-QE_CS1-2011_solusion-2|answers and discussions]]''' | ||
---- | ---- | ||
− | + | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 08:16, 27 July 2012
ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 1, August 2011
Question
Part 1. 25 pts
$ \color{blue} \text{ Consider the optimization problem, } $
$ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $
$ \text{subject to } x_{1}\geq0, x_{2}\geq0 $
$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $
- Click here to view student answers and discussions
Part 2.
$ \color{blue} \text{ Use the simplex method to solve the problem, } $
maximize x1 + x2
$ \text{subject to } x_{1}-x_{2}\leq2 $
$ x_{1}+x_{2}\leq6 $
$ x_{1},-x_{2}\geq0. $
- Click here to view student answers and discussions