Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 
+
[[Category:QE]]
= [[ECE-QE_CS1-2011|Question 1, August 2011]], Part 1 =
+
[[Category:CNSIP]]
 
+
[[Category:problem solving]]
:[[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
+
[[Category:communication networks signal and image processing]]
  
 +
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS),  Question 1, August 2011=
 
----
 
----
 +
==Question==
 +
'''Part 1. ''' 25 pts
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>
 
  
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Consider the optimization problem, }</math></span></font>  
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }   x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
+
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>  
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
+
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>
+
<math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br>  
 
+
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
 
+
<math>
+
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-1|here]] to view student [[ECE-QE_CS1-2011_solusion-1|answers and discussions]]'''
 
----
 
----
 +
'''Part 2.'''
  
<math>\color{blue}\text{Solution 2:}</math>
 
  
here put sol.2
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}  \text{ Use the simplex method to solve the problem, }</math></span></font>
----
+
  
<math>\color{blue}\left( \text{b} \right) \text{Find}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">maximize &nbsp; &nbsp; &nbsp; &nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub></span>  
f_{x}\left( x|y,z\right )
+
</math><br>  
+
  
<math>\color{blue}\text{Solution 1:}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>  
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>  
+
  
'''<font face="serif"><math>
 
= \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z}
 
</math>&nbsp;&nbsp;</font>'''
 
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-2|here]] to view student [[ECE-QE_CS1-2011_solusion-2|answers and discussions]]'''
 
----
 
----
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
 
+
<math>\color{blue}\left( \text{c} \right) \text{Find}
+
f_{Z}\left( z\right )
+
</math><br>
+
 
+
<math>\color{blue}\text{Solution 1:}</math>
+
 
+
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
 
+
<math>\color{blue}\left( \text{d} \right) \text{Find}
+
f_{Y}\left(y|z \right )
+
</math><br>
+
 
+
<math>\color{blue}\text{Solution 1:}</math>
+
 
+
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
=e^{-zy}z\cdot1_{\left[0,\infty \right )}(y)
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
<math>\color{blue}\left( \text{e} \right) \text{Find}
+
f_{XY}\left(x,y|z \right )
+
</math><br>
+
 
+
<math>\color{blue}\text{Solution 1:}</math>
+
 
+
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
=\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y)
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
 
+
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
+
 
+
Go to
+
 
+
*Part 1: [[ECE-QE_CS1-2011_solusion-1|solutions and discussions]]
+
*Part 2: [[ECE-QE CS1-2011 solusion-2|solutions and discussions]]
+
 
+
----
+
 
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Revision as of 08:16, 27 July 2012


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 1, August 2011


Question

Part 1. 25 pts


 $ \color{blue} \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

Click here to view student answers and discussions

Part 2.


 $ \color{blue} \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},-x_{2}\geq0. $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang