Line 59: Line 59:
 
----
 
----
  
 +
<math>\color{blue}\left( \text{c} \right) \text{Find}
 +
f_{Z}\left( z\right )
 +
</math><br>
 +
 +
<math>\color{blue}\text{Solution 1:}</math>
 +
 +
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 +
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
 +
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 +
</span></font>
 +
 +
'''<font face="serif"><math>
 +
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
 +
</math>&nbsp;&nbsp;</font>'''
 +
 +
----
 +
 +
<math>\color{blue}\text{Solution 2:}</math><br>
 +
 +
sol2 here
 +
----
 
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011  
 
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011  
  

Revision as of 14:28, 24 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\text{Solution 1:} $

$ f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx $ 

         $ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $

$ \text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} $

$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} \underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $

$ =\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $


$ \color{blue}\text{Solution 2:} $

here put sol.2


$ \color{blue}\left( \text{b} \right) \text{Find} f_{x}\left( x|y,z\right ) $

$ \color{blue}\text{Solution 1:} $

$ = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} $

$ = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} $  


$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\left( \text{c} \right) \text{Find} f_{Z}\left( z\right ) $

$ \color{blue}\text{Solution 1:} $

$ =\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy} $

$ =\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z) $  


$ \color{blue}\text{Solution 2:} $

sol2 here


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett