Line 34: | Line 34: | ||
<math>\color{blue}\text{Solution 2:}</math> | <math>\color{blue}\text{Solution 2:}</math> | ||
− | + | here put sol.2 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
---- | ---- | ||
− | <math>\color{blue}\left( \text{ | + | <math>\color{blue}\left( \text{b} \right) \text{Find} |
+ | f_{x}\left( x|y,z\right ) | ||
+ | </math><br> | ||
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
− | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | + | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> |
+ | = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} | ||
+ | </math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | ||
</span></font> | </span></font> | ||
− | '''<font face="serif"><math> | + | '''<font face="serif"><math> |
− | + | = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} | |
− | + | </math> </font>''' | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
---- | ---- | ||
Line 91: | Line 56: | ||
<math>\color{blue}\text{Solution 2:}</math><br> | <math>\color{blue}\text{Solution 2:}</math><br> | ||
− | + | sol2 here | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
---- | ---- | ||
− | + | "Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011 | |
Go to | Go to | ||
− | *Part 1: [[ECE- | + | *Part 1: [[ECE-QE_CS1-2011_solusion-1|solutions and discussions]] |
− | *Part 2: [[ECE-QE | + | *Part 2: [[ECE-QE CS1-2011 solusion-2|solutions and discussions]] |
− | + | ||
− | + | ||
− | + | ||
---- | ---- |
Revision as of 14:20, 24 July 2012
ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)
Question 1, August 2011, Part 1
$ \color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $
$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $
$ \color{blue}\text{Solution 1:} $
$ f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx $
$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $
$ \text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} $
$ =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} \underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z} \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $
$ =\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)} \left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right ) $
$ \color{blue}\text{Solution 2:} $
here put sol.2
$ \color{blue}\left( \text{b} \right) \text{Find} f_{x}\left( x|y,z\right ) $
$ \color{blue}\text{Solution 1:} $
$ = \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )} $
$ = \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z} $
$ \color{blue}\text{Solution 2:} $
sol2 here
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
Go to
- Part 1: solutions and discussions
- Part 2: solutions and discussions