m (ECE PhD QE CNSIP Jan 2000 Problem1.5 moved to ECE PhD QE CNSIP Jan 2001 Problem1.5: wrong year!) |
|||
Line 6: | Line 6: | ||
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]== | ==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]== | ||
− | + | ||
+ | Let a linear discrete parameter shift-invariant system have the following difference equation: <math class="inline">y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right)</math> where <math class="inline">x\left(n\right)</math> in the input and <math class="inline">y\left(n\right)</math> is the output. Now suppose this system has as its input the discrete parameter random process <math class="inline">\mathbf{X}_{n}</math> . You may assume that the input process is zero-mean i.i.d. | ||
+ | |||
+ | '''(a) (5 pts)''' Is the input wide-sense stationary (show your work)? | ||
+ | |||
+ | '''(b) (5 pts)''' Is the output process wide-sense stationary (show your work)? | ||
+ | |||
+ | '''(c) (5 pts)''' Find the autocorrelation function of the input process. | ||
+ | |||
+ | '''(d) (5 pts)''' Find the autocorrelation function, in closed form, for the output process. | ||
+ | |||
---- | ---- | ||
==Share and discuss your solutions below.== | ==Share and discuss your solutions below.== | ||
---- | ---- | ||
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])= | =Solution 1 (retrived from [[ECE600_QE_2000_August|here]])= | ||
− | + | '''(a)''' | |
+ | |||
+ | <math class="inline">E\left[\mathbf{X}_{n}\right]=0.</math> | ||
+ | |||
+ | <math class="inline">R_{\mathbf{XX}}\left(n+m,\; n\right)</math> | ||
+ | |||
+ | <math class="inline">\therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.}</math> | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | <math class="inline">E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0.</math> | ||
+ | |||
+ | <math class="inline">E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0.</math> | ||
+ | |||
+ | <math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math> | ||
+ | |||
+ | <math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math> depends on the time difference <math class="inline">m</math> . Thus, <math class="inline">\mathbf{Y}_{n}</math> is wide-sense stationary. | ||
+ | |||
+ | '''(c) ''' | ||
+ | |||
+ | <math class="inline">R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right).</math> | ||
+ | |||
+ | '''(d) ''' | ||
+ | |||
+ | <math class="inline">R_{\mathbf{Y}}\left(m\right)</math> | ||
+ | |||
+ | <math class="inline">\because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right).</math> | ||
+ | |||
---- | ---- | ||
==Solution 2== | ==Solution 2== |
Revision as of 05:56, 17 July 2012
Contents
Question from ECE QE January 2001
Let a linear discrete parameter shift-invariant system have the following difference equation: $ y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right) $ where $ x\left(n\right) $ in the input and $ y\left(n\right) $ is the output. Now suppose this system has as its input the discrete parameter random process $ \mathbf{X}_{n} $ . You may assume that the input process is zero-mean i.i.d.
(a) (5 pts) Is the input wide-sense stationary (show your work)?
(b) (5 pts) Is the output process wide-sense stationary (show your work)?
(c) (5 pts) Find the autocorrelation function of the input process.
(d) (5 pts) Find the autocorrelation function, in closed form, for the output process.
Solution 1 (retrived from here)
(a)
$ E\left[\mathbf{X}_{n}\right]=0. $
$ R_{\mathbf{XX}}\left(n+m,\; n\right) $
$ \therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.} $
(b)
$ E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0. $
$ E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0. $
$ R_{\mathbf{YY}}\left(n+m,\; n\right) $
$ R_{\mathbf{YY}}\left(n+m,\; n\right) $ depends on the time difference $ m $ . Thus, $ \mathbf{Y}_{n} $ is wide-sense stationary.
(c)
$ R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right). $
(d)
$ R_{\mathbf{Y}}\left(m\right) $
$ \because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right). $
Solution 2
Write it here.