Line 187: | Line 187: | ||
\end{pmatrix}</math><br> | \end{pmatrix}</math><br> | ||
− | <font color="#ff0000">'''<math>\tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \}</math><br>'''</font> | + | <font color="#ff0000">'''<math>\tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \}</math><br>'''</font> |
SOSC is trivially satisfied. | SOSC is trivially satisfied. | ||
Line 252: | Line 252: | ||
<math>\text{From 2, } \mu=1 \text{, and } 2\left ( x_{1}-1 \right )=-1</math><br> | <math>\text{From 2, } \mu=1 \text{, and } 2\left ( x_{1}-1 \right )=-1</math><br> | ||
− | <font face="serif">''< | + | <font face="serif">''<span class="texhtml">From 3, ''x''<sub>1</sub> + ''x''<sub>2</sub> = 2</span><br>''</font> |
<math>\text{From above two equations, we obtain a candidate point for the minimizer } x^{*}=\begin{bmatrix} | <math>\text{From above two equations, we obtain a candidate point for the minimizer } x^{*}=\begin{bmatrix} | ||
Line 263: | Line 263: | ||
<math>L \left ( x^{*}, \mu ^{*}\right )= F\left ( x^{*}\right )+ \mu ^{*} G\left ( x^{*}\right )=\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}</math> | <math>L \left ( x^{*}, \mu ^{*}\right )= F\left ( x^{*}\right )+ \mu ^{*} G\left ( x^{*}\right )=\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}</math> | ||
− | < | + | <span class="texhtml">Because μ<sup> * </sup> > 0'' '',''w''''e ''''h''''a''''v''''e''</span><br> |
<math>\tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: \begin{bmatrix} | <math>\tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: \begin{bmatrix} | ||
Line 269: | Line 269: | ||
\end{bmatrix}y=0 \right \} = \left \{ y: =\begin{bmatrix} | \end{bmatrix}y=0 \right \} = \left \{ y: =\begin{bmatrix} | ||
a & -a | a & -a | ||
− | \end{bmatrix}:a\in\Re \right \}</math> | + | \end{bmatrix}:a\in\Re \right \}</math> |
<math>\text{Hence } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix} | <math>\text{Hence } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix} | ||
Line 279: | Line 279: | ||
a \\ | a \\ | ||
-a | -a | ||
− | \end{bmatrix}=2a^{2}>0</math><br | + | \end{bmatrix}=2a^{2}>0</math><br> |
− | + | ||
− | + | ||
+ | <math>\therefore x^{*} \text{ satisfies the SOSC for strict local minimizer. }</math> | ||
+ | <br> | ||
---- | ---- |
Revision as of 00:12, 29 June 2012
ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)
Question 3, Part 2, August 2011
$ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the following optimization problem, } $
$ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } x_{2}- x_{1}^{2}\geq0 $
$ 2-x_{1}-x_{2}\geq0 $
$ x_{1}\geq0. $
$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $
Theorem:
For the problem: minimize $ f \left( x \right) $
subject to $ h \left( x \right) =0 $
$ g \left( x \right) \leq 0 $
The KKT condition (FONC) for local minimizer x * of f is:
$ \text{1. } \mu^{*}\geq0 $
$ \text{2. } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} $
$ \text{3. } \mu ^{*T}g\left ( x^{*} \right )=0 $
$ \text{4. } h\left ( x^{*} \right )=0 $
$ \text{5. } g \left( x^{*} \right) \leq0 $
SONC: Suppose that x * is regular
$ \text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0 $
$ \text{2. For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0 $
$ T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in \tilde{J}\left( x^{*} \right) \right \} $
SOSC: There exist a feasible point x * that
$ \text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0 $
$ \text{2. For all } y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0 $
$ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $
Process:
a. Write down the KKT condition for this probelm
b. Find all points (and KKT multipliers) satisfying the KKT condition. In each case, determine if the point is regular.
c. Find all points in part b that also satisfy the SONC.
d. Find all points in part c that also satisfy the SOSC.
e. Find all points in part c that are local minimizers.
$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $
$ \color{blue}\text{Solution 1:} $
$ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ g_{1}\left( x \right)=x_{1}^{2}-x_{2} $
$ g_{2}\left( x \right)= x_{1}+x_{2}-2 $
$ g_{3}\left( x \right)= -x_{1} $
$ \text{ The problem is to optimize f(x), subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $
$ \text{Let } l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $
$ =\begin{pmatrix} 2x_{1}-4\\ 2x_{2}-2 \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $
$ \mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right) $
$ = \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0 $
$ \text{Let } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $
$ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}= \begin{pmatrix} 0 \\ 0\end{pmatrix} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $
$ \text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} 0\\0 \end{bmatrix} \text{satisfies the FONC for maximum.} $
$ \color{blue}\text{Solution 2:} $
$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } g_{1}\left( x \right)= x_{1}^{2}-x_{2}\leq0 $
$ g_{2}\left( x \right)= x_{1}+x_{2}-2\leq0 $
$ g_{3}\left( x \right)= -x_{1}\leq0 $
$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $
$ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ]=0 $ $ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{1}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $
$ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $
$ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $
$ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $
$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $ $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}+\mu_{2} \end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix}\\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $
$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $
$ \color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.} $
$ \color{blue}\text{Solution 1:} $
$ L\left ( x^{*},\mu^{*} \right )= \nabla l \left( x^{*},\mu^{*} \right)= \begin{pmatrix} 2&0 \\ 0&2 \end{pmatrix}-2\begin{pmatrix} 2&0 \\ 0&0 \end{pmatrix} = \begin{pmatrix} -2&0 \\ 0&2 \end{pmatrix} $
$ \tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \} $
SOSC is trivially satisfied.
$ \color{red} \text{This solution misunderstood the range of } y \text{ for SOSC condition } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $
$ \color{red} y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, where } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $
$ \color{blue}\text{Solution 2:} $
$ L\left ( x_{1}\mu \right )= D^{2} l \left ( x _{1}\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix} $
$ \text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.} $
$ \therefore L \left ( x^{*}, \mu ^{*}\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} $
$ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $
$ \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $ $ \therefore i= 2 $
$ \therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \} $
$ \begin{bmatrix} y_{1}& y_{2} \end{bmatrix}\begin{bmatrix} -2 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1}\\ y_{2} \end{bmatrix} \geqslant 0 $
$ -2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right ) $
for y1 = y2, (1) is always satisfied.
$ \therefore \text{For all } y\in \tilde{T}\left( x^{* },\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $
$ \therefore \text{point } x^{*} \text{satisfy the SOSC} $
$ \color{blue}\text{Relative Problem: } $
minimize − x2 + (x1 − 1)2 − 2
$ \text{subject to } x_{1}+x_{2}\leq2 $
$ \text{KKT condition: 1. } \mu\geq0 $
$ \text{2. } \begin{bmatrix} 2 \left(x_{1}-1 \right) & -1 \end{bmatrix} +\mu \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} $
$ \text{3. } \mu \left( x_{1}+x_{2}-2 \right)=0 $
$ \text{From 2, } \mu=1 \text{, and } 2\left ( x_{1}-1 \right )=-1 $
From 3, x1 + x2 = 2
$ \text{From above two equations, we obtain a candidate point for the minimizer } x^{*}=\begin{bmatrix} 1/2\\ 3/2 \end{bmatrix} $
Check for SOSC:
$ L \left ( x^{*}, \mu ^{*}\right )= F\left ( x^{*}\right )+ \mu ^{*} G\left ( x^{*}\right )=\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} $
Because μ * > 0 ,w'e 'h'a'v'e
$ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: \begin{bmatrix} 1 & 1 \end{bmatrix}y=0 \right \} = \left \{ y: =\begin{bmatrix} a & -a \end{bmatrix}:a\in\Re \right \} $
$ \text{Hence } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix} a & -a \end{bmatrix}\begin{bmatrix} 2 & 0\\ 0 & 0 \end{bmatrix}\begin{bmatrix} a \\ -a \end{bmatrix}=2a^{2}>0 $
$ \therefore x^{*} \text{ satisfies the SOSC for strict local minimizer. } $
Automatic Control (AC)- Question 3, August 2011
Go to
- Problem 1: solutions and discussions
- Problem 2: solutions and discussions
- Problem 3: solutions and discussions
- Problem 4: solutions and discussions
- Problem 5: solutions and discussions