Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)=
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
=Question 3, Part 2, August 2011  =
+
 
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE_AC3-2011_solusion-3|3]],[[ECE-QE_AC3-2011_solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]]  
+
= Question 3, Part 2, August 2011  =
 +
 
 +
:[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]]
 +
 
 
----
 
----
  
Line 16: Line 19:
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
0 & 0  
 
0 & 0  
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>  
+
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math><br>
  
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>
 
 
----
 
----
Share and discuss your solutions below
+
 
 +
'''Theorem:'''
 +
 
 +
For the problem: &nbsp; &nbsp;minimize &nbsp;<math>f \left( x \right)</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;&nbsp;<math>h \left( x \right) =0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>g \left( x \right) \leq 0</math>
 +
 
 +
The KKT condition (FONC) is:
 +
 
 +
<math>\text{1. } \mu^{*]\geq0</math>
 +
 
 +
<math>\text{2. } Df\left ( x^{*} \right )+\lambda ^{*}^{T}Dh\left ( x^{*} \right )+\mu ^{*}^{T}Dg\left ( x^{*} \right )=0^{T}</math>
 +
 
 +
 
 +
 
 
----
 
----
 +
 +
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
Line 139: Line 159:
 
\end{pmatrix}</math><br>  
 
\end{pmatrix}</math><br>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<math>\tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \}</math>
+
<font color="#ff0000"><span style="font-size: 17px;">'''<math>\tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \}</math>'''</span></font>  
'''</span></font>  
+
  
 
SOSC is trivially satisfied.  
 
SOSC is trivially satisfied.  
Line 181: Line 200:
 
----
 
----
  
Automatic Control (AC)- Question 3, August 2011
+
Automatic Control (AC)- Question 3, August 2011  
 +
 
 +
Go to
  
Go to
+
*Problem 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]  
*Problem 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
+
*Problem 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]  
*Problem 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]
+
*Problem 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
*Problem 3: [[ECE-QE_AC3-2011_solusion-3|solutions and discussions]]
+
*Problem 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  
*Problem 4: [[ECE-QE_AC3-2011_solusion-4|solutions and discussions]]
+
 
*Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]]
 
*Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]]
  

Revision as of 21:33, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the following optimization problem, } $

                            $ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                        $ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

                                                 $ 2-x_{1}-x_{2}\geq0 $

                                                 $ x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $


Theorem:

For the problem:    minimize  $ f \left( x \right) $

                             subject to   $ h \left( x \right) =0 $

                                                $ g \left( x \right) \leq 0 $

The KKT condition (FONC) is:

$ \text{1. } \mu^{*]\geq0 $

$ \text{2. } Df\left ( x^{*} \right )+\lambda ^{*}^{T}Dh\left ( x^{*} \right )+\mu ^{*}^{T}Dg\left ( x^{*} \right )=0^{T} $



$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\text{Solution 1:} $

        $ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

        $ g_{1}\left( x \right)=x_{1}^{2}-x_{2} $

        $ g_{2}\left( x \right)= x_{1}+x_{2}-2 $

        $ g_{3}\left( x \right)= -x_{1} $

 $ \text{ The problem is to optimize f(x), subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $

$ \text{Let } l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $

                      $ =\begin{pmatrix} 2x_{1}-4\\ 2x_{2}-2 \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $

$ \mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right) $

            $ = \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0 $

$ \text{Let } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $

$ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}= \begin{pmatrix} 0 \\ 0\end{pmatrix} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $

$ \text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} 0\\0 \end{bmatrix} \text{satisfies the FONC for maximum.} $


$ \color{blue}\text{Solution 2:} $

$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                                  $ \text{subject to } g_{1}\left( x \right)= x_{1}^{2}-x_{2}\leq0 $

                                                           $ g_{2}\left( x \right)= x_{1}+x_{2}-2\leq0 $

                                                           $ g_{3}\left( x \right)= -x_{1}\leq0 $

$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $

                                                                      $ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ]=0 $

                                        $ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{1}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $

                                        $ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $

                                               $ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $

                                        $ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $

$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $       $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}+\mu_{2} \end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix}\\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $

$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $


$ \color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.} $

$ \color{blue}\text{Solution 1:} $

$ L\left ( x^{*},\mu^{*} \right )= \nabla l \left( x^{*},\mu^{*} \right)= \begin{pmatrix} 2&0 \\ 0&2 \end{pmatrix}-2\begin{pmatrix} 2&0 \\ 0&0 \end{pmatrix} = \begin{pmatrix} -2&0 \\ 0&2 \end{pmatrix} $

$ \tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \} $

SOSC is trivially satisfied.


$ \color{blue}\text{Solution 2:} $

$ L\left ( x_{1}\mu \right )= D^{2} l \left ( x _{1}\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix} $

                   $ \text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.} $

$ \therefore L \left ( x^{*}, \mu ^{*}\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} $

$ \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

$ \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $     $ \therefore i= 2 $

$ \therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \} $

$ \begin{bmatrix} y_{1}& y_{2} \end{bmatrix}\begin{bmatrix} -2 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1}\\ y_{2} \end{bmatrix} \geqslant 0 $

                    $ -2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right ) $

                    for y1 = y2,  (1) is always satisfied.

$ \therefore \text{For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $

$ \therefore \text{point } x^{*} \text{satisfy the SOSC} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett