Line 109: Line 109:
 
----
 
----
  
<font face="serif"><span class="texhtml" /></font><math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>
+
<math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;min &nbsp;<math>2x_{1}+3x_{2}</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;min &nbsp;<span class="texhtml">2''x''<sub>1</sub> + 3''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to&nbsp;<math>2x_{1}+x_{2}\leq4</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to&nbsp;<math>2x_{1}+x_{2}\leq4</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}\leq3</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}\leq3</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1},x_{2}\geq0.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1},x_{2}\geq0.</math>  
  
<math>\color{blue}\text{Solution:}</math>
+
<math>\color{blue}\text{Solution:}</math>  
  
Transform to standard form: &nbsp; min &nbsp;<math>-2x_{1}-3x_{2}</math>
+
Transform to standard form: &nbsp; min &nbsp;<span class="texhtml"> − 2''x''<sub>1</sub> − 3''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;<math>2x_{1}+x_{2}+x_{3}=4</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;<span class="texhtml">2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 4</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}+x_{4}=3</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>  
  
 
<math>\begin{matrix}
 
<math>\begin{matrix}
Line 134: Line 134:
 
  & 1 & 1 & 0 & 1 & 3 \\  
 
  & 1 & 1 & 0 & 1 & 3 \\  
 
c^{T} & -2 & -3 & 0 & 0 & 0
 
c^{T} & -2 & -3 & 0 & 0 & 0
\end{matrix}</math>
+
\end{matrix}</math>  
  
We have&nbsp;<math>r_{1}=-2<0</math>&nbsp; and &nbsp;<math>r_{2}=-3<0</math>. &nbsp;We introduce&nbsp;<math>a_{2}</math>&nbsp;into the new basis and pivot&nbsp;<math>y_{22}</math>, by calculating the ratios&nbsp;<math>y_{i0}/y_{i2},y_{i2}>0</math>.<sub></sub>
+
We have&nbsp;<span class="texhtml">''r''<sub>1</sub> = 2 &lt; 0</span>&nbsp; and &nbsp;<span class="texhtml">''r''<sub>2</sub> = 3 &lt; 0</span>. &nbsp;We introduce&nbsp;<span class="texhtml">''a''<sub>2</sub></span>&nbsp;into the new basis and pivot&nbsp;<span class="texhtml">''y''<sub>22</sub></span>, by calculating the ratios&nbsp;<span class="texhtml">''y''<sub>''i''0</sub> / ''y''<sub>''i''2</sub>,''y''<sub>''i''2</sub> &gt; 0</span>.<sub></sub>  
  
 
<math>\begin{matrix}
 
<math>\begin{matrix}
Line 143: Line 143:
 
1 & 1 & 0 & 1 & 3 \\  
 
1 & 1 & 0 & 1 & 3 \\  
 
1 & 0 & 0 & 3 & 9
 
1 & 0 & 0 & 3 & 9
\end{matrix}</math>
+
\end{matrix}</math>  
  
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is
+
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is  
  
 
<math>x^{*}=\begin{bmatrix}
 
<math>x^{*}=\begin{bmatrix}
Line 152: Line 152:
 
1 &  
 
1 &  
 
0
 
0
\end{bmatrix}^{T}.</math>
+
\end{bmatrix}^{T}.</math>  
  
 
The optimal solution to the original problem is&nbsp;<math>x^{*}=\begin{bmatrix}
 
The optimal solution to the original problem is&nbsp;<math>x^{*}=\begin{bmatrix}
 
0 &  
 
0 &  
 
3
 
3
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.
+
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.  
 
+
  
 +
<br>
  
 
----
 
----

Revision as of 19:25, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},x_{2}\geq0. $


Theorem: 

A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.

Simplex Method:

1. Transform the given problem into standard form by introducing slack variables x3 and x4.

2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.

3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.

4. If $ r_{j}>\geq0 $ for all j, stop. -- the current basic feasible solution is optimal.

5. Select a q such that rq < 0

6. If no yiq > 0, stop. -- the problem is unbounded; else, calculate  $ p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \} $

7. Update the canonical augmented matrix by pivoting about the (p,q) th element.

8. Go to step 3.


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                     x1 + x2 + x4 = 6 

                     $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6.


$ \color{blue}\text{Related Problem: Solve the following problem using simplex method} $

                     min  2x1 + 3x2

            subject to $ 2x_{1}+x_{2}\leq4 $

                             $ x_{1}+x_{2}\leq3 $

                             $ x_{1},x_{2}\geq0. $

$ \color{blue}\text{Solution:} $

Transform to standard form:   min   − 2x1 − 3x2

                                       subject to  2x1 + x2 + x3 = 4

                                                         x1 + x2 + x4 = 3

                                                         $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & -2 & -3 & 0 & 0 & 0 \end{matrix} $

We have r1 = − 2 < 0  and  r2 = − 3 < 0.  We introduce a2 into the new basis and pivot y22, by calculating the ratios yi0 / yi2,yi2 > 0.

$ \begin{matrix} x_{1} & x_{2} & x_{3} & x_{4} & b\\ 2 & 1 & 1 & 0 & 4\\ 1 & 1 & 0 & 1 & 3 \\ 1 & 0 & 0 & 3 & 9 \end{matrix} $

All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is

$ x^{*}=\begin{bmatrix} 0 & 3 & 1 & 0 \end{bmatrix}^{T}. $

The optimal solution to the original problem is $ x^{*}=\begin{bmatrix} 0 & 3 \end{bmatrix}^{T}. $ and the optimal objective value is 9.



Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood