Line 13: Line 13:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},x_{2}\geq0.</math>  
  
 
----
 
----
Line 33: Line 33:
 
5. Select a&nbsp;<span class="texhtml">''q''</span>&nbsp;such that&nbsp;<span class="texhtml">''r''<sub>''q''</sub> &lt; 0</span>  
 
5. Select a&nbsp;<span class="texhtml">''q''</span>&nbsp;such that&nbsp;<span class="texhtml">''r''<sub>''q''</sub> &lt; 0</span>  
  
6. If no&nbsp;<span class="texhtml">''y''<sub>''i''''q''</sub> &gt; 0</span>, stop. -- the problem is unbounded; else, calculate&nbsp;<math>p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \}</math>.&nbsp;  
+
6. If no&nbsp;<span class="texhtml">''y''<sub>''iq''</sub> &gt; 0</span>, stop. -- the problem is unbounded; else, calculate&nbsp;'''&nbsp;<math>p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \}</math>.&nbsp; '''
  
 
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.  
 
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.  
Line 80: Line 80:
  
 
<math>\begin{matrix}
 
<math>\begin{matrix}
  & a_{1} & a_{2} & a_{3} & a_{4} & b\\  
+
  & x_{1} & x_{2} & x_{3} & x_{4} & b\\  
 
  & 1 & -1 & 1 & 0 & 2\\  
 
  & 1 & -1 & 1 & 0 & 2\\  
 
  & 1 & 1 & 0 & 1 & 6 \\  
 
  & 1 & 1 & 0 & 1 & 6 \\  
Line 106: Line 106:
  
 
The maximum value for &nbsp;<font face="serif"><span class="texhtml">&nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub> is 6.</span><br></font>  
 
The maximum value for &nbsp;<font face="serif"><span class="texhtml">&nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub> is 6.</span><br></font>  
 +
 +
----
 +
 +
<font face="serif"><span class="texhtml" /></font><math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;min &nbsp;<math>2x_{1}+3x_{2}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to&nbsp;<math>2x_{1}+x_{2}\leq4</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}\leq3</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1},x_{2}\geq0.</math>
 +
 +
<math>\color{blue}\text{Solution:}</math>
 +
 +
Transform to standard form: &nbsp; min &nbsp;<math>-2x_{1}-3x_{2}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;<math>2x_{1}+x_{2}+x_{3}=4</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}+x_{2}+x_{4}=3</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>
 +
 +
<math>\begin{matrix}
 +
& x_{1} & x_{2} & x_{3} & x_{4} & b\\
 +
& 2 & 1 & 1 & 0 & 4\\
 +
& 1 & 1 & 0 & 1 & 3 \\
 +
c^{T} & -2 & -3 & 0 & 0 & 0
 +
\end{matrix}</math>
 +
 +
We have&nbsp;<math>r_{1}=-2<0</math>&nbsp; and &nbsp;<math>r_{2}=-3<0</math>. &nbsp;We introduce&nbsp;<math>a_{2}</math>&nbsp;into the new basis and pivot&nbsp;<math>y_{22}</math>, by calculating the ratios&nbsp;<math>y_{i0}/y_{i2},y_{i2}>0</math>.<sub></sub>
 +
 +
<math>\begin{matrix}
 +
x_{1} & x_{2} & x_{3} & x_{4} & b\\
 +
2 & 1 & 1 & 0 & 4\\
 +
1 & 1 & 0 & 1 & 3 \\
 +
1 & 0 & 0 & 3 & 9
 +
\end{matrix}</math>
 +
 +
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is
 +
 +
<math>x^{*}=\begin{bmatrix}
 +
0 &
 +
3 &
 +
1 &
 +
0
 +
\end{bmatrix}^{T}.</math>
 +
 +
The optimal solution to the original problem is&nbsp;<math>x^{*}=\begin{bmatrix}
 +
0 &
 +
3
 +
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.
 +
 +
  
 
----
 
----
Line 113: Line 167:
 
Go to  
 
Go to  
  
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]
+
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]  
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]  
+
*Part 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]  
 
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
 
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
 
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  
 
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  

Revision as of 19:23, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},x_{2}\geq0. $


Theorem: 

A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.

Simplex Method:

1. Transform the given problem into standard form by introducing slack variables x3 and x4.

2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.

3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.

4. If $ r_{j}>\geq0 $ for all j, stop. -- the current basic feasible solution is optimal.

5. Select a q such that rq < 0

6. If no yiq > 0, stop. -- the problem is unbounded; else, calculate  $ p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \} $

7. Update the canonical augmented matrix by pivoting about the (p,q) th element.

8. Go to step 3.


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                     x1 + x2 + x4 = 6 

                     $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6.


<span class="texhtml" />$ \color{blue}\text{Related Problem: Solve the following problem using simplex method} $

                     min  $ 2x_{1}+3x_{2} $

            subject to $ 2x_{1}+x_{2}\leq4 $

                             $ x_{1}+x_{2}\leq3 $

                             $ x_{1},x_{2}\geq0. $

$ \color{blue}\text{Solution:} $

Transform to standard form:   min  $ -2x_{1}-3x_{2} $

                                       subject to  $ 2x_{1}+x_{2}+x_{3}=4 $

                                                         $ x_{1}+x_{2}+x_{4}=3 $

                                                         $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & -2 & -3 & 0 & 0 & 0 \end{matrix} $

We have $ r_{1}=-2<0 $  and  $ r_{2}=-3<0 $.  We introduce $ a_{2} $ into the new basis and pivot $ y_{22} $, by calculating the ratios $ y_{i0}/y_{i2},y_{i2}>0 $.

$ \begin{matrix} x_{1} & x_{2} & x_{3} & x_{4} & b\\ 2 & 1 & 1 & 0 & 4\\ 1 & 1 & 0 & 1 & 3 \\ 1 & 0 & 0 & 3 & 9 \end{matrix} $

All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is

$ x^{*}=\begin{bmatrix} 0 & 3 & 1 & 0 \end{bmatrix}^{T}. $

The optimal solution to the original problem is $ x^{*}=\begin{bmatrix} 0 & 3 \end{bmatrix}^{T}. $ and the optimal objective value is 9.



Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett