Line 1: | Line 1: | ||
− | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)= | + | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) = |
− | =Question 3, Part 2, August 2011 = | + | |
− | :[[ECE- | + | = Question 3, Part 2, August 2011 = |
+ | |||
+ | :[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]] | ||
+ | |||
---- | ---- | ||
Line 13: | Line 16: | ||
---- | ---- | ||
− | + | ||
+ | <math>\color{blue}\text{Discussion:}</math><br> | ||
+ | |||
+ | First, the given problem need to be transformed into standard form by introducing slack variables <math>x_{2} x_{4}</math> | ||
+ | |||
---- | ---- | ||
+ | |||
===== <math>\color{blue}\text{Solution 1:}</math> ===== | ===== <math>\color{blue}\text{Solution 1:}</math> ===== | ||
Line 83: | Line 91: | ||
---- | ---- | ||
− | Automatic Control (AC)- Question 3, August 2011 | + | Automatic Control (AC)- Question 3, August 2011 |
+ | |||
+ | Go to | ||
− | + | *Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]] | |
− | * | + | *Part 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]] |
− | * | + | *Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]] |
− | * | + | *Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]] |
− | * | + | *Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]] |
− | * | + | |
---- | ---- |
Revision as of 18:02, 28 June 2012
Contents
ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)
Question 3, Part 2, August 2011
$ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $
maximize x1 + x2
$ \text{subject to } x_{1}-x_{2}\leq2 $
$ x_{1}+x_{2}\leq6 $
$ x_{1},-x_{2}\geq0. $
$ \color{blue}\text{Discussion:} $
First, the given problem need to be transformed into standard form by introducing slack variables $ x_{2} x_{4} $
$ \color{blue}\text{Solution 1:} $
min − x1 − x2
subject to x1 − x2 + x3 = 2
x1 + x2 + x4 = 6
$ x_{1},x_{2},x_{3},x_{4}\geq 0 $
$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $
$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $
$ \color{blue}\text{Solution 2:} $
Get standard form for simplex method min − x1 − x2
subject to x1 − x2 + x3 = 2
x1 + x2 + x4 = 6
$ x_{i}\geq0, i=1,2,3,4 $
$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $ $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $
$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $
The maximum value for x1 + x2 is 6
Automatic Control (AC)- Question 3, August 2011
Go to
- Part 1: solutions and discussions
- Part 2: solutions and discussions
- Part 3: solutions and discussions
- Part 4: solutions and discussions
- Part 5: solutions and discussions