Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
 
[[Category:Automatic Control]]
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011  =
[[Category:problem solving]]
+
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011=
 
 
----
 
----
 +
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
  
Line 13: Line 12:
  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''  
 +
 
----
 
----
 +
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;...<br>  
+
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;&nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha d \text{ for all } \alpha\in\Omega \left[0,\alpha_{0}\right]</math><br>
 +
 
 +
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re_{2}, \text{ and } y\geq0</math>
  
<br>
 
 
----
 
----
 +
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
Line 29: Line 32:
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
  
===== <math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br> =====
+
===== <math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br> =====
 +
 
 
----
 
----
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
+
 
 +
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
 +
 
 +
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]

Revision as of 20:47, 26 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011


 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $


$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha d \text{ for all } \alpha\in\Omega \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re_{2}, \text{ and } y\geq0 $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $ 

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood