Line 13: Line 13:
 
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math><br>  
 
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math><br>  
  
<math>\color{blue}\text{Solution 2:}</math>
+
&nbsp;<math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } \\ x^{*} \text{, if } \exists\alpha_{0} \\ \text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;
 
+
<math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if}</math>&nbsp;<math>\exists\alpha_{0}</math>&nbsp;  
+
  
 
<math>\text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;<br>  
 
<math>\text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;<br>  
Line 24: Line 22:
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
  
===== <math>\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point satisfy this condition?}</math><br> =====
+
===== <math>\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br> =====

Revision as of 21:29, 21 June 2012

ECE QE AC-3 August 2011 Solusion

$ \text{1.} \left( \text{20 pts} \right) \text{Consider the optimization problem,} $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

$ \left( \text{i} \right) \text{Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $

 $ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } \\ x^{*} \text{, if } \exists\alpha_{0} \\ \text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $ 

$ \text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $ 

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

$ \left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood