Line 9: Line 9:
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
  
===== Solusion 1: =====
+
===== Solusion 1: =====
  
We need to find a direction&nbsp;<math>d</math>, such that&nbsp;<math>\exists\alpha_{0}>0,</math>,&nbsp;
+
We need to find a direction&nbsp;<span class="texhtml">''d''</span>, such that&nbsp;<math>\exists\alpha_{0}>0,</math>,&nbsp;  
  
===== Solusion 2: =====
+
===== Solusion 2: =====
  
 
<math>d\in\Re_{2}, d\neq0</math>&nbsp;is a feasible direction at &nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>  
 
<math>d\in\Re_{2}, d\neq0</math>&nbsp;is a feasible direction at &nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>  
  
&nbsp;<math>\because \left{x\in\Omega: x_{1}\geq0, x_{2}\geq0\right}</math>  
+
'''<math>\begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''
  
<math>\therefore d=
+
<br> <math>\therefore d=
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
  
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====

Revision as of 16:33, 21 June 2012

ECE QE AC-3 August 2011 Solusion

1. (20 pts) Consider the optimization problem,

                  maximize   $ -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

                  subject to   $ x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point  $ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
Solusion 1:

We need to find a direction d, such that $ \exists\alpha_{0}>0, $

Solusion 2:

$ d\in\Re_{2}, d\neq0 $ is a feasible direction at  x * , if  $ \exists\alpha_{0} $  that  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega $  for all $ 0\leq\alpha\leq\alpha_{0} $

$ \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang