Line 1: Line 1:
 
= ECE QE AC-3 August 2011 Solusion  =
 
= ECE QE AC-3 August 2011 Solusion  =
  
===== 1. (20 pts) Consider the optimization problem,  =====
+
==== 1. (20 pts) Consider the optimization problem,  ====
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; maximize &nbsp;&nbsp;<math>-x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; maximize &nbsp;&nbsp;<math>-x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
Line 9: Line 9:
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
 
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
  
<math>d\in\Re_{2}, d\neq0 \textmd{is a feasible direction at}</math>&nbsp;is a feasible direction at&nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right]</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>
+
===== Solusion 1: =====
  
&nbsp;<math>\because x_{1}\geq0, x_{2}\geq0</math>  
+
We need to find a direction&nbsp;<math>d</math>, such that&nbsp;<math>\exists\alpha_{0}>0,</math>,&nbsp;
 +
 
 +
===== Solusion 2: =====
 +
 
 +
<math>d\in\Re_{2}, d\neq0</math>&nbsp;is a feasible direction at &nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>
 +
 
 +
&nbsp;<math>\because \left{x\in\Omega: x_{1}\geq0, x_{2}\geq0\right}</math>  
  
 
<math>\therefore d=
 
<math>\therefore d=
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re_{2}, d_{2}\neq0</math><br>  
+
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0</math><br>  
  
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====
 
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====

Revision as of 16:32, 21 June 2012

ECE QE AC-3 August 2011 Solusion

1. (20 pts) Consider the optimization problem,

                  maximize   $ -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

                  subject to   $ x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point  $ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
Solusion 1:

We need to find a direction $ d $, such that $ \exists\alpha_{0}>0, $

Solusion 2:

$ d\in\Re_{2}, d\neq0 $ is a feasible direction at  x * , if  $ \exists\alpha_{0} $  that  $ \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega $  for all $ 0\leq\alpha\leq\alpha_{0} $

 $ \because \left{x\in\Omega: x_{1}\geq0, x_{2}\geq0\right} $

$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett