(24 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:bonus point project]]
 
<br>  
 
<br>  
  
= MA 265 Chapter 3 Sections 3.1-3.2 =
+
= MA 265 Chapter 3 Sections 3.1-3.2 =
  
= By: Daniel Ford =
+
= By: Daniel Ford =
  
= What are determinants? =
+
= What are determinants? =
  
To understand determinants, you must first know about permutations.
+
To understand determinants, you must first know about permutations.  
  
If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.
+
== <u>'''Permutations'''</u>  ==
  
'''<u>Example:</u>'''
+
If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.
  
If D = {6, 7, 8, 9}, then 7689 would be a permutation of D. &nbsp;This corresponds to the function f: D→ D defined by
+
'''<u>Example:</u>'''
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;{{f(1) = 6
+
If D = {1, 2, 3, 4}, then 2134 would be a permutation of D. &nbsp;This corresponds to the function f: D→ D defined by
f(2) = 7
+
f(3) = 8
+
f(4) = 9}}
+
  
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(1) = 1<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(2) = 2<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(3) = 3<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(4) = 4<br>Then after permutation,<br> &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(1) = 2<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(2) = 1<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(3) = 3<br>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;σ(4) = 4
  
 +
The reason that this is important to know is that the total number of permutations can be even or odd, depending on the number of inversions. &nbsp;So in the permutation 4321, where 4 precedes 3, 4 precedes 1, 4 prececedes 2, 3 precedes 1, 3 precedes 2, and 2 precedes 1. &nbsp;Thus the total number of inversions in this premutation is 6, which would make 4321, even. &nbsp;This determines what sign you put in front, so if it is odd, then you put a negative sign (-) in front; and if it is even, then you put a postive sign (+) in front.
 +
 +
----
  
 
<br>  
 
<br>  
  
<br> [[2011 Spring MA 26500 Momin|Back to 2011 Spring MA 26500 Momin]]  
+
== <u>'''Determinants'''</u>  ==
 +
 
 +
Now that you know what permutations are, we can start to talk about determinants.
 +
 
 +
<br>
 +
 
 +
Let A = [a<sub>ij&nbsp;</sub>] be an ''n'' x ''n'' matrix. &nbsp;The '''determinant '''function, denoted by '''det''', is defined by<sub></sub>
 +
 
 +
==== &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A) =&nbsp;∑(±)a<sub>1j</sub><sub>1</sub>a<sub>2j2</sub>•••a<sub>njn</sub>  ====
 +
 
 +
<sub></sub>where the summation is over all permutations j<sub>1</sub>j<sub>2</sub>•••j<sub>n</sub> of the set D = {1,2,...,n}. &nbsp;The sign is taken as positive (+) or negative (-) according to whether the permutation&nbsp;j<sub>1</sub>j<sub>2</sub>•••j<sub>n</sub>&nbsp;is ever or odd.<sub><sup></sup></sub>
 +
 
 +
<br>
 +
 
 +
<u>'''Example:'''</u>
 +
 
 +
If A = [a<sub>11</sub>] is a 1 x 1 matrix, then det(A) = a<sub>11</sub>.
 +
 
 +
<u>'''Example:'''</u><br>
 +
 
 +
If
 +
 
 +
  <math> A =
 +
        \begin{bmatrix}
 +
        a1 & a2\\
 +
        a3 & a4 \end{bmatrix}</math>                   
 +
 
 +
then
 +
 
 +
=== &nbsp; det(A) = a<sub>1</sub>a<sub>4</sub> - a<sub>2</sub>a<sub>3</sub>  ===
 +
 
 +
<sub></sub>
 +
 
 +
<u>'''Example:'''</u>
 +
 
 +
If
 +
 
 +
  <math> A =
 +
        \begin{bmatrix}
 +
        a1 & a2 & a3\\
 +
        a4 & a5 & a6\\
 +
        a7 & a8 & a9 \end{bmatrix}</math>                         
 +
 
 +
then
 +
 
 +
=== &nbsp; det(A) = (a<sub>1</sub>a<sub>5</sub>a<sub>9</sub> + a<sub>2</sub>a<sub>6</sub>a<sub>7</sub> + a<sub>3</sub>a<sub>4</sub>a<sub>8</sub>) - (a<sub>3</sub>a<sub>5</sub>a<sub>7</sub> + a<sub>2</sub>a<sub>4</sub>a<sub>9</sub> + a<sub>1</sub>a<sub>6</sub>a<sub>8</sub>)  ===
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
<u>'''Example:'''</u>
 +
 
 +
When you need to compute the determinant of a 4 x 4 matrix or greater, you can not use the cross-multiply and add/subtract formula that you used to compute that of a 3 x 3 matrix or lower. &nbsp;So in order to compute the determinant you must row reduce the matrix, shown below.
 +
 
 +
<u>Steps:</u>
 +
 
 +
#Multiply row 1 by -1/2 and add to row 2.
 +
#Multiply row 1 by -3/4 and add to row 3.
 +
#Multiply row 2 by -3/2 and add to row 3.
 +
#Interchange rows 3 and 4. (**IMPORTANT NOTE**&nbsp;Row replacement does not change det)
 +
 
 +
  <math> A =
 +
        \begin{bmatrix}
 +
        4 & 2 & 2 & 0\\
 +
        2 & 0 & 0 & 0\\
 +
        3 & 0 & 0 & 1\\
 +
        0 & 0 & 1 & 0\end{bmatrix}</math>  <math>  =
 +
        \begin{bmatrix}
 +
        4 & 2 & 2 & 0\\
 +
        0 & -1 & -1 & 0\\
 +
        0 & -3/2 & -3/2 & 1\\
 +
        0 & 0 & 1 & 0\end{bmatrix}</math>  <math>  =
 +
        \begin{bmatrix}
 +
        4 & 2 & 2 & 0\\
 +
        0 & -1 & -1 & 0\\
 +
        0 & 0 & 0 & 1\\
 +
        0 & 0 & 1 & 0\end{bmatrix}</math>  <math>  = (-1)
 +
        \begin{bmatrix}
 +
        4 & 2 & 2 & 0\\
 +
        0 & -1 & -1 & 0\\
 +
        0 & 0 & 1 & 0\\
 +
        0 & 0 & 0 & 1\end{bmatrix}</math>
 +
 
 +
After you have row reduce the matrix you can multiply the diagonal of the matrix because the matrix is in in triangular form (which means there is a triangle of zeros in the bottom or upper part of the matrix). &nbsp;'''**One thing to note is that when you do a row interchange, during the row reduction process, make sure to put a (-1) out in front of the matrix, but this will not change the value of the determinant.**''' So your final answer is:
 +
 
 +
= &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A) = (-1)(4)(-1)(1)(1) = 4<br>  =
 +
 
 +
----
 +
 
 +
<br>
 +
 
 +
== <u>'''Properties of Determinants'''</u>  ==
 +
 
 +
There are some different properties of determinants that are helpful when computing determinants.
 +
 
 +
<u>'''Theorems:'''</u>
 +
 
 +
*If A is a matrix, then det(A) = det(A<sup>T</sup>).
 +
*If matrix B results from matrix A by interchanging two different rows (columns) of A, then det(B) = –det(A).
 +
*If two rows (columns) of A are equal, then det(A) = 0.
 +
*If a row (column) of A consists entirely of zeros, then det(A) = 0.
 +
*If B is obtained from A by multiplying a row (column) of A by a real number ''k'', then det(B) = ''k'' det(A).
 +
*If A is an ''n'' x ''n'' matrix, then A is nonsingular if and only if det(A)&nbsp;≠ 0.
 +
*If A and B are ''n'' x ''n'' matrices, then det(AB) = det(A)det(B).
 +
 
 +
<br>
 +
 
 +
<u>'''Corollaries:'''</u>
 +
 
 +
*If A is an ''n'' x ''n'' matrix, then A'''x''' = '''0 '''has a nontrivial solution if and only if det(A) = 0.
 +
*If A is nonsingular, then det(A<sup>-1</sup>) = 1/det(A).
 +
*If A and B are similar matrices, then det(A) = det(B).&nbsp;
 +
 
 +
<br>
 +
 
 +
<br>  
 +
 
 +
[[2011 Spring MA 26500 Momin|Back to 2011 Spring MA 26500 Momin]]&nbsp;
 +
 
 +
&nbsp;
  
[[Category:2011_Spring_MA_26500_Momin]]
+
[[Category:MA265Spring2011Momin|MA265Spring2011Momin]]

Latest revision as of 09:56, 6 May 2012


MA 265 Chapter 3 Sections 3.1-3.2

By: Daniel Ford

What are determinants?

To understand determinants, you must first know about permutations.

Permutations

If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.

Example:

If D = {1, 2, 3, 4}, then 2134 would be a permutation of D.  This corresponds to the function f: D→ D defined by

        σ(1) = 1
        σ(2) = 2
        σ(3) = 3
        σ(4) = 4
Then after permutation,
        σ(1) = 2
        σ(2) = 1
        σ(3) = 3
        σ(4) = 4

The reason that this is important to know is that the total number of permutations can be even or odd, depending on the number of inversions.  So in the permutation 4321, where 4 precedes 3, 4 precedes 1, 4 prececedes 2, 3 precedes 1, 3 precedes 2, and 2 precedes 1.  Thus the total number of inversions in this premutation is 6, which would make 4321, even.  This determines what sign you put in front, so if it is odd, then you put a negative sign (-) in front; and if it is even, then you put a postive sign (+) in front.



Determinants

Now that you know what permutations are, we can start to talk about determinants.


Let A = [aij ] be an n x n matrix.  The determinant function, denoted by det, is defined by

                    det(A) = ∑(±)a1j1a2j2•••anjn

where the summation is over all permutations j1j2•••jn of the set D = {1,2,...,n}.  The sign is taken as positive (+) or negative (-) according to whether the permutation j1j2•••jn is ever or odd.


Example:

If A = [a11] is a 1 x 1 matrix, then det(A) = a11.

Example:

If

  $  A =          \begin{bmatrix}         a1 & a2\\         a3 & a4 \end{bmatrix} $                     

then

  det(A) = a1a4 - a2a3

Example:

If

  $  A =         \begin{bmatrix}         a1 & a2 & a3\\         a4 & a5 & a6\\         a7 & a8 & a9 \end{bmatrix} $                          

then

  det(A) = (a1a5a9 + a2a6a7 + a3a4a8) - (a3a5a7 + a2a4a9 + a1a6a8)



Example:

When you need to compute the determinant of a 4 x 4 matrix or greater, you can not use the cross-multiply and add/subtract formula that you used to compute that of a 3 x 3 matrix or lower.  So in order to compute the determinant you must row reduce the matrix, shown below.

Steps:

  1. Multiply row 1 by -1/2 and add to row 2.
  2. Multiply row 1 by -3/4 and add to row 3.
  3. Multiply row 2 by -3/2 and add to row 3.
  4. Interchange rows 3 and 4. (**IMPORTANT NOTE** Row replacement does not change det)
  $  A =         \begin{bmatrix}         4 & 2 & 2 & 0\\         2 & 0 & 0 & 0\\         3 & 0 & 0 & 1\\         0 & 0 & 1 & 0\end{bmatrix} $  $    =         \begin{bmatrix}         4 & 2 & 2 & 0\\         0 & -1 & -1 & 0\\         0 & -3/2 & -3/2 & 1\\         0 & 0 & 1 & 0\end{bmatrix} $  $    =         \begin{bmatrix}         4 & 2 & 2 & 0\\         0 & -1 & -1 & 0\\         0 & 0 & 0 & 1\\         0 & 0 & 1 & 0\end{bmatrix} $  $    = (-1)         \begin{bmatrix}         4 & 2 & 2 & 0\\         0 & -1 & -1 & 0\\         0 & 0 & 1 & 0\\         0 & 0 & 0 & 1\end{bmatrix} $

After you have row reduce the matrix you can multiply the diagonal of the matrix because the matrix is in in triangular form (which means there is a triangle of zeros in the bottom or upper part of the matrix).  **One thing to note is that when you do a row interchange, during the row reduction process, make sure to put a (-1) out in front of the matrix, but this will not change the value of the determinant.** So your final answer is:

                                    det(A) = (-1)(4)(-1)(1)(1) = 4



Properties of Determinants

There are some different properties of determinants that are helpful when computing determinants.

Theorems:

  • If A is a matrix, then det(A) = det(AT).
  • If matrix B results from matrix A by interchanging two different rows (columns) of A, then det(B) = –det(A).
  • If two rows (columns) of A are equal, then det(A) = 0.
  • If a row (column) of A consists entirely of zeros, then det(A) = 0.
  • If B is obtained from A by multiplying a row (column) of A by a real number k, then det(B) = k det(A).
  • If A is an n x n matrix, then A is nonsingular if and only if det(A) ≠ 0.
  • If A and B are n x n matrices, then det(AB) = det(A)det(B).


Corollaries:

  • If A is an n x n matrix, then Ax = 0 has a nontrivial solution if and only if det(A) = 0.
  • If A is nonsingular, then det(A-1) = 1/det(A).
  • If A and B are similar matrices, then det(A) = det(B). 



Back to 2011 Spring MA 26500 Momin 

 

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch