(7 intermediate revisions by one other user not shown)
Line 1: Line 1:
= Linearity  =
+
[[Category:bonus point project]]
 +
=== Linearity  ===
 +
 
 +
== Theory  ==
  
 
There are three definitions we discussed in class for linearity.  
 
There are three definitions we discussed in class for linearity.  
  
<u></u><u>Definition 1</u>  
+
<u></u>'''<u>Definition 1</u>'''
 +
 
 +
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''ax''<sub>1</sub>(''t'') + ''b''x''<sub>2</sub>(''t'')''&nbsp;''is ''ay''<sub>1</sub>(''t'') + ''b''y''<sub>2</sub>(''t'').&nbsp;</span>
 +
 
 +
'''<u>Definition 2</u>'''
 +
 
 +
If
 +
 
 +
<math> x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) </math>
 +
 
 +
<math> x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) </math>
 +
 
 +
then
 +
 
 +
<math> ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) </math>  
  
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''a''''x'''''<b><sub>1</sub>(''t'') + ''b'''''x''<sub>2</sub>(''t'')'''''</span>'''''is <span class="texhtml" />''a''''y'''''<b><sub>1</sub>(</b>'''''t'') + ''b''''''''y''<sub>2</sub>(''t'').  
+
for any <math>a,b\in </math>&nbsp; ''all complex numbers'', any <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> then we say the system is '''linear'''.  
  
<u>Definition 2</u>  
+
'''<u>Definition 3</u>'''
  
If
+
<u></u>[[Image:Slide1.jpg]]<br>
  
<math> x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) </math>
+
== Applications  ==
  
<math> x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) </math>
+
Linearity can be used to simplify the Fourier transform. &nbsp;Integration and differentiation are also linear. &nbsp;Once a non-linear system is made linear, complex systems are easier to model mathematically. &nbsp;True linear systems are virtually unknown in the real world, but over a small range of variables, systems can be modeled as linear. &nbsp;
  
then
+
<br>
  
<math> ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) </math>
+
<br>  
  
for any <math>a,b\in </math>&nbsp; ''all complex numbers'', any <math>x_1(t), x_2(t)</math> then we say the system is linear.
+
<br>

Latest revision as of 09:50, 6 May 2012

Linearity

Theory

There are three definitions we discussed in class for linearity.

Definition 1

A system is called linear if for any constants $ a,b\in $  all complex numbers and for any input signals x1(t),x2(t) with response y1(t),y2(t), respectively, the system's response to ax1(t) + bx2(t) is ay1(t) + by2(t). 

Definition 2

If

$ x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_1(t) $

$ x_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow y_2(t) $

then

$ ax_1(t) + bx_2(t) \rightarrow \begin{bmatrix} system \end{bmatrix} \rightarrow ay_1(t) + by_2(t) $

for any $ a,b\in $  all complex numbers, any x1(t),x2(t) then we say the system is linear.

Definition 3

Slide1.jpg

Applications

Linearity can be used to simplify the Fourier transform.  Integration and differentiation are also linear.  Once a non-linear system is made linear, complex systems are easier to model mathematically.  True linear systems are virtually unknown in the real world, but over a small range of variables, systems can be modeled as linear.  




Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett