(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
=Metrics and Similarity Measures=
 
Metric Space (X,d)
 
Metric Space (X,d)
 
<math>d:X \times X \rightarrow \Re ^{+}</math>
 
<math>d:X \times X \rightarrow \Re ^{+}</math>
Line 6: Line 7:
 
<math>x, y, z \in X</math>
 
<math>x, y, z \in X</math>
  
1. <math>d(x,y)=d(y,x)</math>
+
#<math>d(x,y)=d(y,x)</math>
 
+
#<math>d(x,z)\leq d(x,y)+d(y,z)</math>
2. <math>d(x,z)\leq d(x,y)+d(y,z)</math>
+
#<math>d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y)</math>
 
+
3. <math>d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y)</math>
+
  
 
If X is vector space, metric can be induced by the norm <math>||\cdot||</math>.
 
If X is vector space, metric can be induced by the norm <math>||\cdot||</math>.
Line 20: Line 19:
 
<math>||\cdot||: X \rightarrow \Re ^{+}</math>
 
<math>||\cdot||: X \rightarrow \Re ^{+}</math>
  
1. <math>|x| \geq 0, ||x||=0 \Leftrightarrow x=0</math>
+
#<math>|x| \geq 0, ||x||=0 \Leftrightarrow x=0</math>
2. <math>||\alpha x||=|\alpha | ||x||</math>
+
#<math>||\alpha x||=|\alpha | ||x||</math>
3. <math>||x+y|| \leq ||x|| + || ||</math>
+
#<math>||x+y|| \leq ||x|| + ||y||</math>
  
 +
[[Category:ECE662]]
 
Defining metric, we can measure similarity of elements of set X.
 
Defining metric, we can measure similarity of elements of set X.
  
 
Example of metric
 
Example of metric
1. Minkowski Metric <math> \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p}</math>
+
#Minkowski Metric <math> \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p}</math>
 
+
#Riemannian Metric <math>D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}</math>
2. Riemannian Metric  
+
#Tanimoto metric <math>D(S_1, S_2) = \frac {|S_1|+|S_2|-2|S_1 \bigcap S_2| }{|S_1|+|S_2|-|S_1 \bigcap S_2|} </math>
 
+
#Procrustes metric <math>D(p,\bar p)= min_{R,T} \sum_{i=1}^n
3. Tanimoto metric
+
{\begin{Vmatrix} Rp_i+T-\bar p_i \end{Vmatrix}} _{L^2} </math>, R: Rotation, T: Translation
 
+
----
4. Procrustes metric
+
[[ECE662:BoutinSpring08_OldKiwi|Back to ECE662 Spring 2008]]

Latest revision as of 02:54, 12 April 2012

Metrics and Similarity Measures

Metric Space (X,d) $ d:X \times X \rightarrow \Re ^{+} $

X is set, not necessarily vector space

$ x, y, z \in X $

  1. $ d(x,y)=d(y,x) $
  2. $ d(x,z)\leq d(x,y)+d(y,z) $
  3. $ d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y) $

If X is vector space, metric can be induced by the norm $ ||\cdot|| $.

$ d(x,y)=||y-x|| $

Norm is defined as follows

$ ||\cdot||: X \rightarrow \Re ^{+} $

  1. $ |x| \geq 0, ||x||=0 \Leftrightarrow x=0 $
  2. $ ||\alpha x||=|\alpha | ||x|| $
  3. $ ||x+y|| \leq ||x|| + ||y|| $

Defining metric, we can measure similarity of elements of set X.

Example of metric

  1. Minkowski Metric $ \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p} $
  2. Riemannian Metric $ D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})} $
  3. Tanimoto metric $ D(S_1, S_2) = \frac {|S_1|+|S_2|-2|S_1 \bigcap S_2| }{|S_1|+|S_2|-|S_1 \bigcap S_2|} $
  4. Procrustes metric $ D(p,\bar p)= min_{R,T} \sum_{i=1}^n {\begin{Vmatrix} Rp_i+T-\bar p_i \end{Vmatrix}} _{L^2} $, R: Rotation, T: Translation

Back to ECE662 Spring 2008

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett