Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:right;">
+
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: center; width: 70%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:center;">
 
{|
 
{|
 
|-
 
|-
|'''If you enjoy using this [[Collective_Table_of_Formulas|collective table of formulas]], please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea] or [[Donations | becoming a sponsor]].'''
+
|  
| [[Image:DonateNow.png]]
+
'''This [[Collective Table of Formulas|Collective table of formulas]] is proudly sponsored'''<br> '''by the [http://www.facebook.com/hkn.beta Nice Guys of Eta Kappa Nu].''' <br><br> Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!
|-
+
 
 +
| &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Image:HKNlogo.jpg]]
 
|}
 
|}
</div>
+
</div>  
  
  

Revision as of 05:21, 5 April 2012

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Inequalities
Triangular Inequalities
$ \vert a_1 \vert - \vert a_2 \vert \leqq \vert a_1 +a_2 \vert \leqq \vert a_1 \vert + \vert a_2 \vert $
$ \vert a_1 + a_2 + \cdots + a_n \vert \leqq \vert a_1 \vert + \vert a_2 \vert + \cdots + \vert a_n \vert $
Cauchy-schwarz Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert ^2 \leqq \left ( \vert a_1 \vert ^2 + \vert a_2 \vert ^2 + \cdots + \vert a_n \vert ^2 \right ) \left ( \vert b_1 \vert ^2 + \vert b_2 \vert ^2 + \cdots + \vert b_n \vert ^2 \right ) $
$ \mbox{ The equality is valid if and only if } a_1/b_1 = a_2/b_2 = \cdots = a_n/b_n $
Inequalities Involving Arithmetic, Geometric and Harmonic
$ \mbox{ if } A, \ G \mbox{ and } H \mbox{ are arithmatic, geometric and harmonic means of a positive numbers } a_1 , a_2 ,\cdots , a_n, \mbox{ then } $
$ H \leqq G \leqq A $
$ A = \frac{a_1 + a_2 + \cdots + a_n}{n} \qquad \qquad G = \sqrt[n]{a_1a_2 \cdots a_n} \qquad \qquad \frac{1}{H} = \frac{1}{n} \left ( {1 \over a_1} + {1 \over a_2 }+ \cdots +{1 \over a_n } \right ) $
$ \mbox{ the equality occures only if } a_1 = a_2 =\cdots = a_n. $
Holder Inequality
$ \vert a_1 b_1 + a_2b_2 + \cdots + a_nb_n \vert \leqq \left ( \vert a_1 \vert ^p + \vert a_2 \vert ^p + \cdots + \vert a_n \vert ^p \right ) ^{1/p} \left ( \vert b_1 \vert ^q + \vert b_2 \vert ^q + \cdots + \vert b_n \vert ^q \right ) ^{1/q} $
$ {1 \over p} + {1 \over q} = 1 \qquad p > 1, \ q > 1. $
$ \mbox{ The equality occures only if } \vert a_1 \vert ^{p-1} / \vert b_1 \vert = \vert a_2 \vert ^{p-1} / \vert b_2 \vert = \cdots =\vert a_n \vert ^{p-1} / \vert b_n \vert . $
$ \text{for} \ p = q = 2,\ \text{the formula reduces to Cauchy-Shwartz Inequality.} $
Tchebytchev Inequality
$ \mbox{ if } a_1 \geqq a_2 \geqq \cdots \geqq a_n \mbox{ and } b_1 \geqq b_2 \geqq \cdots \geqq b_n \mbox{ then } $
$ \left ( \frac{a_1 + a_1 + \cdots + a_n}{n} \right ) \left ( \frac{ b_1 + b_2 + \cdots +b_n}{n} \right ) \leqq \frac{a_1b_1+a_2b_2+\cdots+a_nb_n}{n} $
$ (a_1 + a_2 + \cdots +a_n)(b_1 + b_2 + \cdots +b_n) \leqq n(a_1b_1 + a_2b_2 + \cdots +a_nb_n) $
Minkowski Inequality
$ \mbox{ if } a_1,a_2, \cdots , a_n, b_1,b_2, \cdots, b_n \mbox{ are all positive and } p > 1 \mbox{ then } $
$ \left \{ (a_1+b+1)^p + (a_2+b_2)^p+ \cdots + (a_n+b_n)^p \right \} ^{1/p} \leqq (a_1^p + a_2^p + \cdots + a_n^p)^{1/p} + (b_1^p+b_2^p+ \cdots+ b_n^p)^{1/p} $
$ \mbox{ the equality holds if and only if } a_1/b_1 = a_2 /b_2 = \cdots = a_n/b_n. $
Cauchy-schwarz Inequality for Integrals
$ \left \vert \int_a^b f(x) g(x) d x \right \vert ^2 \leqq \left \{ \int_a^b \vert f(x) \vert ^2 d x \right \}\left \{ \int_a^b \vert g(x) \vert ^2 d x \right \} $
$ \mbox{ The equality ocures only if } f(x) /g(x) \mbox { is constant} . \qquad $
Holder Inequality for Integrals
$ \int_a^b \vert f(x) g(x) \vert d x \leqq \left \{ \int_a^b \vert f(x) \vert ^p d x \right \} ^{1/p} \left \{ \int _a^b \vert g(x) \vert ^q d x \right \} ^{1/q} $
$ \mbox { where } \frac{1}{p} + \frac{1}{q} = 1,\ p>1,\ q> 1. $
$ \mbox{ if } p = q =2, \mbox{ this formula reduces to Cauchy-Schwartz inequality for intergrals } \quad $
$ \mbox{ Equality holds only if } \vert f(x) \vert ^{p-1} / \vert g(x) \vert \mbox { is constant. } $
Minkowski Inequality for Integrals
$ \mbox{ if } p > 1 , \quad $
$ \left \{ \int_a^b \vert f(x) + g(x) \vert ^p d x \right \} ^{1/p} \leqq \left \{ \int_a^b \vert f(x) \vert ^ p d x \right \} ^{1/p} + \left \{ \int_a^b \vert g(x) \vert ^p \right \} ^{1/p} $
$ \mbox{ The equality ocures only if } f(x) /g(x) \mbox { is constant} . \qquad $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett