(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
From landis.m.huffman.1 Tue Feb 12 21:31:30 -0500 2008
+
Help for [[ECE662:Homework_1_OldKiwi|HW1 ECE662 Spring 2012]]
From: landis.m.huffman.1
+
----
Date: Tue, 12 Feb 2008 21:31:30 -0500
+
Subject: Tutorial
+
Message-ID: <20080212213130-0500@https://engineering.purdue.edu>
+
 
+
I, for one, did not know how to do this, so I looked into it so that you don't have to now.
+
 
+
<math> </math>
+
 
{ Summary:  To generate "colored" samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math> from "white" samples <math>x</math> drawn from <math>\mathcal{N}(\vec{0},I_n)</math>, simply let <math>\tilde{x} = Ax + \mu</math>, where <math>A</math> is the Cholesky decomposition of <math>\Sigma</math>, i.e. <math>\Sigma = AA^T</math>}
 
{ Summary:  To generate "colored" samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math> from "white" samples <math>x</math> drawn from <math>\mathcal{N}(\vec{0},I_n)</math>, simply let <math>\tilde{x} = Ax + \mu</math>, where <math>A</math> is the Cholesky decomposition of <math>\Sigma</math>, i.e. <math>\Sigma = AA^T</math>}
  
Consider generating samples |xdist|.  Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution.  If we seek to "color" the noise with an arbitrary covariance matrix |sig|, we must produce a "coloring matrix" |A|.  Let us consider generating a colored sample |xtildfull| from |xfull|, where |xiid| are iid samples drawn from |1Dnormdist|.  (Note:  Matlab has a function, mvnrnd.m, to sample from |normdistarb|, but I discuss here the theory behind it).  Relate |xtild| to |x| as follows:
+
Consider generating samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math>.  Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution.  If we seek to "color" the noise with an arbitrary covariance matrix <math>\Sigma</math>, we must produce a "coloring matrix" <math>A</math>.  Let us consider generating a colored sample <math>\tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T</math> from <math>x = [x_1,x_2,\ldots,x_n]^T</math>, where <math>x_1, x_2, \ldots, x_n</math> are iid samples drawn from <math>\mathcal{N}(0,1)</math>. (Note: Matlab has a function, mvnrnd.m, to sample from <math>\mathcal{N}(\mu,\Sigma)</math>, but I discuss here the theory behind it). Relate <math>\tilde{x}</math> to <math>x</math> as follows:
 
+
|xxtild1|
+
 
+
|xxtild2|
+
 
+
|xxtildn|.
+
 
+
We can rewrite this in matrix form as |xxtildMat|, where matrix |A| is lower triangular.  We have, then, that
+
 
+
|E(n)|, and
+
 
+
|Cov(n,m)def|
+
 
+
|Cov(n,m)| = |Cov(n,m)deffinal|, since |xi|'s are independent, |ximean| and |xivar|
+
 
+
|xivar|.
+
 
+
We are now left with the problem of defining |ani|'s so that the form of |Cov(n,m)| follows the form of |signm|:  i.e.
+
 
+
|signm| = |Cov(n,m)| = |Cov(n,m)deffinal|
+
 
+
|sigrelation|, where |A| is lower triangular, and |sig| is positive definite.  Therefore, |A| follows the form of what is called the Cholesky decomposition of |sig|.
+
 
+
Thus, to summarize, to generate samples |xdist| from samples |x| drawn from |normdist|, simply let |xxtildrel|, where |A| is the Cholesky decomposition of |sig|.
+
 
+
.. |aat| image:: tex
+
:alt: tex:  \Sigma = AA^T
+
 
+
.. |xdist| image:: tex
+
:alt: tex: \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)
+
 
+
.. |sig| image:: tex
+
:alt: tex: \Sigma
+
 
+
.. |signm| image:: tex
+
:alt: tex: \Sigma_{nm}
+
 
+
.. |A| image:: tex
+
:alt: tex: A
+
 
+
.. |xtildfull| image:: tex
+
:alt: tex: \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T
+
 
+
.. |xfull| image:: tex
+
:alt: tex: x = [x_1,x_2,\ldots,x_n]^T
+
 
+
.. |xiid| image:: tex
+
:alt: tex: x_1, x_2, \ldots, x_n
+
 
+
.. |1Dnormdist| image:: tex
+
:alt: tex: \mathcal{N}(0,1)
+
 
+
.. |normdist| image:: tex
+
:alt: tex: \mathcal{N}(\vec{0},I_n)
+
 
+
.. |normdistarb| image:: tex
+
:alt: tex: \mathcal{N}(\mu,\Sigma)
+
 
+
.. |x| image:: tex
+
:alt: tex: x
+
 
+
.. |xtild| image:: tex
+
:alt: tex: \tilde{x}
+
 
+
.. |xxtild1| image:: tex
+
:alt: tex: \tilde{x}_1 = a_{11} x_1,
+
 
+
.. |xxtild2| image:: tex
+
:alt: tex: \tilde{x}_2 = a_{21} x_1  + a_{22} x_2,\ldots
+
 
+
.. |xxtildn| image:: tex
+
:alt: tex: \tilde{x}_n = \sum_{i=1}^n a_{ni}x_i
+
  
.. |xxtildMat| image:: tex
+
<math>
:alt: tex: \tilde{x} = Ax
+
\begin{align}
 +
\tilde{x}_1 &= a_{11} x_1 \\
 +
\tilde{x}_2 &= a_{21} x_1  + a_{22} x_2 \\
 +
&... \\
 +
\tilde{x}_n &= \sum_{i=1}^n a_{ni}x_i \\
 +
\end{align}
 +
</math>
  
.. |xxtildrel| image:: tex
+
We can rewrite this in matrix form as <math>\tilde{x} = Ax</math>, where matrix <math>A</math> is lower triangular.  We have, then, that
:alt: tex: \tilde{x} = Ax + \mu
+
  
.. |E(n)| image:: tex
+
<math>E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0</math>, and
:alt: tex: E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0
+
  
.. |Cov(n,m)def| image:: tex
+
<math>Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow</math>
:alt: tex: Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow
+
  
.. |Cov(n,m)deffinal| image:: tex
+
<math>Cov(\tilde{x}_n,\tilde{x}_m)</math> = <math>\sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}</math>, since <math>x_i</math>'s are independent, <math>E[x_i] = 0</math> and <math>Var[x_i] = 1</math>.
:alt: tex: \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}
+
  
.. |Cov(n,m)| image:: tex
+
We are now left with the problem of defining <math>a_{ni}</math>'s so that the form of <math>Cov(\tilde{x}_n,\tilde{x}_m)</math> follows the form of <math>\Sigma_{nm}</math>:  i.e.
:alt: tex: Cov(\tilde{x}_n,\tilde{x}_m)
+
  
.. |xi| image:: tex
+
<math>\Sigma_{nm}</math> = <math>Cov(\tilde{x}_n,\tilde{x}_m)</math> = <math>\sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}
:alt: tex: x_i
+
</math>
  
.. |xivar| image:: tex
+
<math>\Rightarrow \Sigma = AA^T</math>, where <math>A</math> is lower triangular, and <math>\Sigma</math> is positive definite. Therefore, <math>A</math> follows the form of what is called the Cholesky decomposition of <math>\Sigma</math>.
:alt: tex: Var[x_i] = 1
+
  
.. |ximean| image:: tex
+
----
:alt: tex: E[x_i] = 0
+
[[ECE662:Homework_1_OldKiwi|Back to HW1, ECE662, Spring 2012]]
  
.. |ani| image:: tex
+
[[ECE662:BoutinSpring08_OldKiwi|Back to ECE 662 Spring 2012]]
:alt: tex: a_{ni}
+
  
.. |sigrelation| image:: tex
+
[[Matlab_resources_OldKiwi|Back to "MATLAB Resources for generating Gaussian Data']]
:alt: tex: \Rightarrow \Sigma = AA^T
+

Latest revision as of 11:51, 9 February 2012

Help for HW1 ECE662 Spring 2012


{ Summary: To generate "colored" samples $ \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma) $ from "white" samples $ x $ drawn from $ \mathcal{N}(\vec{0},I_n) $, simply let $ \tilde{x} = Ax + \mu $, where $ A $ is the Cholesky decomposition of $ \Sigma $, i.e. $ \Sigma = AA^T $}

Consider generating samples $ \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma) $. Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution. If we seek to "color" the noise with an arbitrary covariance matrix $ \Sigma $, we must produce a "coloring matrix" $ A $. Let us consider generating a colored sample $ \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T $ from $ x = [x_1,x_2,\ldots,x_n]^T $, where $ x_1, x_2, \ldots, x_n $ are iid samples drawn from $ \mathcal{N}(0,1) $. (Note: Matlab has a function, mvnrnd.m, to sample from $ \mathcal{N}(\mu,\Sigma) $, but I discuss here the theory behind it). Relate $ \tilde{x} $ to $ x $ as follows:

$ \begin{align} \tilde{x}_1 &= a_{11} x_1 \\ \tilde{x}_2 &= a_{21} x_1 + a_{22} x_2 \\ &... \\ \tilde{x}_n &= \sum_{i=1}^n a_{ni}x_i \\ \end{align} $

We can rewrite this in matrix form as $ \tilde{x} = Ax $, where matrix $ A $ is lower triangular. We have, then, that

$ E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0 $, and

$ Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow $

$ Cov(\tilde{x}_n,\tilde{x}_m) $ = $ \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi} $, since $ x_i $'s are independent, $ E[x_i] = 0 $ and $ Var[x_i] = 1 $.

We are now left with the problem of defining $ a_{ni} $'s so that the form of $ Cov(\tilde{x}_n,\tilde{x}_m) $ follows the form of $ \Sigma_{nm} $: i.e.

$ \Sigma_{nm} $ = $ Cov(\tilde{x}_n,\tilde{x}_m) $ = $ \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi} $

$ \Rightarrow \Sigma = AA^T $, where $ A $ is lower triangular, and $ \Sigma $ is positive definite. Therefore, $ A $ follows the form of what is called the Cholesky decomposition of $ \Sigma $.


Back to HW1, ECE662, Spring 2012

Back to ECE 662 Spring 2012

Back to "MATLAB Resources for generating Gaussian Data'

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison