Line 32: | Line 32: | ||
<br> | <br> | ||
+ | <br> | ||
− | == Calculations == | + | == Calculations == |
− | + | ||
<math>\left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right)</math> -----><math>\left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right)</math>------><math>\left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right)</math> ----> <math>\left(\begin{array}{cccc} 1 & 0 | -5/2 & 3/2 \\ 0 & 1 | 2 & -1 \end{array}\right)</math> | <math>\left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right)</math> -----><math>\left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right)</math>------><math>\left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right)</math> ----> <math>\left(\begin{array}{cccc} 1 & 0 | -5/2 & 3/2 \\ 0 & 1 | 2 & -1 \end{array}\right)</math> | ||
Line 40: | Line 40: | ||
<br> | <br> | ||
− | <span class="texhtml"> | + | <span class="texhtml"><math>A^{-1}=\left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right)</math></span> |
− | + | <span class="texhtml" /><br> <br><br><br> | |
− | Note: Calculating a Reuduced Row echelon form for a square matrix which n | + | Note: Calculating a Reuduced Row echelon form for a square matrix which n >5 can get complicated and if you get the Reduced row echelon form by consequence you get the Inverse wrong. In some cases |
Revision as of 05:58, 16 December 2011
Inverse of a Matrix
Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that
Then B is called the inverse matrix of A.
Conditions
A n x n is invertible (non-singular) if:
- Ax=0 has a unique solution
- There is a B matrix such that A B = In
- Ax=b has a unique solution for any b---x=A − 1
Properties
- (AB) − 1 = B − 1A − 1
- (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
- (A − 1) − 1 = A
- (A − 1)T = (AT) − 1
Calculations
$ \left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right) $ ----->$ \left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right) $------>$ \left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right) $ ----> $ \left(\begin{array}{cccc} 1 & 0 | -5/2 & 3/2 \\ 0 & 1 | 2 & -1 \end{array}\right) $
$ A^{-1}=\left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right) $
<span class="texhtml" />
Note: Calculating a Reuduced Row echelon form for a square matrix which n >5 can get complicated and if you get the Reduced row echelon form by consequence you get the Inverse wrong. In some cases