Line 9: Line 9:
 
A <u>vector transformation</u> can transform a vector from R<sup>n</sup> to R<sup>m</sup>  
 
A <u>vector transformation</u> can transform a vector from R<sup>n</sup> to R<sup>m</sup>  
  
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
+
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math><br>Where<br><math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math><br> and<br><math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
 
+
<br>Where  
+
 
+
<br><math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math>  
+
 
+
<br> and  
+
 
+
<br><math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
+
  
 
<br>  
 
<br>  
Line 31: Line 23:
 
<math>X=\left(\begin{array}{c}-1\\-2\end{array}\right)</math><br>  
 
<math>X=\left(\begin{array}{c}-1\\-2\end{array}\right)</math><br>  
  
<math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
+
<math>f(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
  
 
<br>  
 
<br>  
Line 66: Line 58:
  
 
<br> <u>Example 1:</u>  
 
<br> <u>Example 1:</u>  
 +
 +
<br> We must check conditions (1) and (2)
 +
 +
<br>(1):
  
 
<br><math>L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right)</math>  
 
<br><math>L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right)</math>  
Line 77: Line 73:
 
<br><math>L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
 
<br><math>L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
  
<br><math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
+
<br><math>L(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
  
<br> We must check conditions (1) and (2)  
+
<br><math>L(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}(-1)^2\\0\end{array}\right)+L(\left(\begin{array}{c}2\\5\end{array}\right))= \left(\begin{array}{c}(2)^2\\0\end{array}\right)</math>
  
<br>(1):
+
<br><math>\left(\begin{array}{c}1\\0\end{array}\right)+\left(\begin{array}{c}4\\0\end{array}\right)=\left(\begin{array}{c}5\\0\end{array}\right)</math>
 
+
<br>  
+
  
 
[[Category:MA265Fall2011Walther]]
 
[[Category:MA265Fall2011Walther]]

Revision as of 16:41, 14 December 2011

Linear Transformations and Isomorphisms<u</u>


Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

A vector transformation can transform a vector from Rn to Rm

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Where
$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $
and
$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Example 1:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


Example 2:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:


(1) L(u+v) = L(u) + L(v)

(2) L(c*u) = c*L(u)


In other words, a linear transformation is a vector transformation that also meets (1) and (2) denoted from now on as L:V ->W


Let's return to examples 1 and 2 to see if they are linear transformations.


Example 1:


We must check conditions (1) and (2)


(1):


$ L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right) $


$ U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)=\left(\begin{array}{c}-1\\-2\end{array}\right), $


$ V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right) $


$ L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


$ L(\left(\begin{array}{c}-1\\-2\end{array}\right)= \left(\begin{array}{c}(-1)^2\\0\end{array}\right)+L(\left(\begin{array}{c}2\\5\end{array}\right))= \left(\begin{array}{c}(2)^2\\0\end{array}\right) $


$ \left(\begin{array}{c}1\\0\end{array}\right)+\left(\begin{array}{c}4\\0\end{array}\right)=\left(\begin{array}{c}5\\0\end{array}\right) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva