Line 1: | Line 1: | ||
− | <u>'''Linear Transformations and Isomorphisms'''</u> | + | <u>'''Linear Transformations and Isomorphisms'''</u><u</u> |
+ | |||
+ | ---- | ||
<u>Vector Transformations:</u> | <u>Vector Transformations:</u> | ||
Line 49: | Line 51: | ||
A function L:V->W is a <u>linear transformation </u>of V to W if the following are true: | A function L:V->W is a <u>linear transformation </u>of V to W if the following are true: | ||
− | + | <br> | |
− | + | (1) L(u+v) = L(u) + L(v) | |
− | + | (2) L(c*u) = c*L(u) | |
<br> | <br> | ||
+ | |||
+ | In other words, a <u>linear transformation </u>is a <u>vector transformation </u>that also meets (1) and (2) denoted from now on as L:V ->W | ||
<br> | <br> | ||
− | <math>\left(\begin{array}{ | + | Let's return to examples 1 and 2 to see if they are <u>linear transformations</u>.<br> |
+ | |||
+ | <br> <u>Example 1:</u> | ||
+ | |||
+ | <br><math>L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right)</math> | ||
+ | |||
+ | <br><math>U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)=\left(\begin{array}{c}-1\\-2\end{array}\right),</math> | ||
+ | |||
+ | <br><math>V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right)</math> | ||
+ | |||
+ | <br><math>L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right)</math> | ||
+ | |||
+ | <br><math>L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math> | ||
+ | |||
+ | <br><math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math> | ||
+ | |||
+ | <br> We must check conditions (1) and (2) | ||
+ | |||
+ | <br>(1): | ||
+ | |||
+ | <br> | ||
[[Category:MA265Fall2011Walther]] | [[Category:MA265Fall2011Walther]] |
Revision as of 16:30, 14 December 2011
Linear Transformations and Isomorphisms<u</u>
Vector Transformations:
A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)
A vector transformation can transform a vector from Rn to Rm
$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Where
$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $
and
$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Example 1:
$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $
$ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $
$ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $
Example 2:
$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $
$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $
$ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $
Linear Transformations:
A function L:V->W is a linear transformation of V to W if the following are true:
(1) L(u+v) = L(u) + L(v)
(2) L(c*u) = c*L(u)
In other words, a linear transformation is a vector transformation that also meets (1) and (2) denoted from now on as L:V ->W
Let's return to examples 1 and 2 to see if they are linear transformations.
Example 1:
$ L(\left(\begin{array}{c}u_1\\u_2\end{array}\right))= \left(\begin{array}{c}u_1^2\\0\end{array}\right) $
$ U=\left(\begin{array}{c}u_1\\u_2\end{array}\right)=\left(\begin{array}{c}-1\\-2\end{array}\right), $
$ V=\left(\begin{array}{c}v_1\\v_2\end{array}\right)=\left(\begin{array}{c}2\\5\end{array}\right) $
$ L(\left(\begin{array}{c}u_1 + v_1\\u_2 + v_2\end{array}\right))= \left(\begin{array}{c}(u_1 + v_1)^2\\0\end{array}\right) $
$ L(\left(\begin{array}{c}-1 + 2\\-2 + 5\end{array}\right))= \left(\begin{array}{c}(-1 + 2)^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $
$ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $
We must check conditions (1) and (2)
(1):