Line 25: Line 25:
 
<br>  
 
<br>  
  
*<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right)</math>
+
<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right)</math><br>  
  
<br>  
+
<math>X=\left(\begin{array}{c}-1\\-2\end{array}\right)</math><br>  
  
*<math>X=\left(\begin{array}{c}-1\\-2\end{array}\right)</math>
+
<math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>  
 
+
<br>
+
 
+
*<math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math>
+
  
 
<br>  
 
<br>  
Line 41: Line 37:
 
<br>  
 
<br>  
  
*<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math>
+
<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math><br>  
  
<br>
+
<math>X=\left(\begin{array}{c}-1\\4\end{array}\right)</math><br>  
 
+
*<math>X=\left(\begin{array}{c}-1\\4\end{array}\right)</math>
+
 
+
<br>  
+
  
*<math>f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right)</math>
+
<math>f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right)</math>  
  
 
<br>  
 
<br>  

Revision as of 16:10, 14 December 2011

Linear Transformations and Isomorphisms

Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

A vector transformation can transform a vector from Rn to Rm

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Where


$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $


and


$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Example 1:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $


Example 2:


$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $

$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $

$ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:

(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)

In other words, a linear transformation is a vector transformation that also meets (1) and (2).




$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman