Line 19: | Line 19: | ||
<br> | <br> | ||
− | + | <u>Example 1:</u> | |
− | < | + | |
− | < | + | <u></u> |
− | <br | + | <br> |
− | <math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c} | + | *<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right)</math> |
− | <br> <math>X=\left(\begin{array}{c}-1\\ | + | <br> |
+ | |||
+ | *<math>X=\left(\begin{array}{c}-1\\-2\end{array}\right)</math> | ||
<br> | <br> | ||
+ | |||
+ | *<math>f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right)</math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <u>Example 2:</u> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | *<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | *<math>X=\left(\begin{array}{c}-1\\4\end{array}\right)</math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | *<math>f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right)</math> | ||
<br> | <br> |
Revision as of 16:08, 14 December 2011
Linear Transformations and Isomorphisms
Vector Transformations:
A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)
A vector transformation can transform a vector from Rn to Rm
$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Where
$ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $
and
$ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Example 1:
- $ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}x_1^2\\0\end{array}\right) $
- $ X=\left(\begin{array}{c}-1\\-2\end{array}\right) $
- $ f(\left(\begin{array}{c}-1\\-2\end{array}\right))= \left(\begin{array}{c}-1^2\\0\end{array}\right)= \left(\begin{array}{c}1\\0\end{array}\right) $
Example 2:
- $ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $
- $ X=\left(\begin{array}{c}-1\\4\end{array}\right) $
- $ f(\left(\begin{array}{c}-1\\4\end{array}\right))= \left(\begin{array}{c}-(-1)\\-1 - 4\\-1\end{array}\right)= \left(\begin{array}{c}1\\- 5\\-1\end{array}\right) $
Linear Transformations:
A function L:V->W is a linear transformation of V to W if the following are true:
(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)
In other words, a linear transformation is a vector transformation that also meets (1) and (2).
$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $