Line 5: Line 5:
 
A <u>vector transformation </u>is a function that is performed on a vector. (i.e. f:X-&gt;Y)  
 
A <u>vector transformation </u>is a function that is performed on a vector. (i.e. f:X-&gt;Y)  
  
A vector transformation can transform a vector from R<sup>n</sup> to R<sup>m</sup>  
+
A <u>vector transformation</u> can transform a vector from R<sup>n</sup> to R<sup>m</sup>  
  
 
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
 
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
  
Where <math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math> and <math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
+
<br>Where <math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math> and <math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math>  
  
 
<br>  
 
<br>  
Line 16: Line 16:
  
 
<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math>  
 
<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math>  
 +
 +
<br> <math>X=\left(\begin{array}{c}-1\\4\end{array}\right)</math>
  
 
<br>  
 
<br>  

Revision as of 15:54, 14 December 2011

Linear Transformations and Isomorphisms

Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

A vector transformation can transform a vector from Rn to Rm

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Where $ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $ and $ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $


Examples:

$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $


$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $



Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:

(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)

In other words, a linear transformation is a vector transformation that also meets (1) and (2).




$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010