Line 1: Line 1:
'''Linear Transformations and Isomorphisms'''
+
<u>'''Linear Transformations and Isomorphisms'''</u>
  
''Vector Transformations:''
+
<u>Vector Transformations:</u>
  
A ''vector transformation'' is a function that is performed on a vector. (i.e. f:X->Y)
+
A <u>vector transformation </u>is a function that is performed on a vector. (i.e. f:X-&gt;Y)  
  
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right)</math>
+
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right)</math>  
  
Where
+
Where <math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math> and <math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right)</math>  
<math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math>
+
and
+
<math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right)</math>
+
  
 +
<br>
  
 +
<u>Linear Transformations</u>'':''
  
''Linear Transformations:''
+
A function L:V-&gt;W is a <u>linear transformation </u>of V to W if the following are true:  
  
A function L:V->W is a ''linear transformation'' of V to W if the following are true:
+
(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)
  
(1) L(u+v) = L(u) + L(v)
+
In other words, a <u>linear transformation </u>is a <u>vector transformation </u>that also meets (1) and (2).
(2) L(c*u) = c*L(u)
+
  
In other words, a ''linear transformation'' is a ''vector transformation'' that also meets (1) and (2).
+
<br>
  
 +
<br>
  
 +
<br>
  
 
+
<math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>  
 
+
 
+
 
+
<math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>
+
  
 
[[Category:MA265Fall2011Walther]]
 
[[Category:MA265Fall2011Walther]]

Revision as of 15:41, 14 December 2011

Linear Transformations and Isomorphisms

Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right) $

Where $ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $ and $ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:

(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)

In other words, a linear transformation is a vector transformation that also meets (1) and (2).




$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman