Line 46: | Line 46: | ||
----- | ----- | ||
[[ECE301|Go to Relevant Course Page: ECE 301]] | [[ECE301|Go to Relevant Course Page: ECE 301]] | ||
+ | |||
[[ECE438|Go to Relevant Course Page: ECE 438]] | [[ECE438|Go to Relevant Course Page: ECE 438]] | ||
+ | |||
+ | [[ECE538|Go to Relevant Course Page: ECE 538]] | ||
+ | |||
[[Collective_Table_of_Formulas|Back to Collective Table]] | [[Collective_Table_of_Formulas|Back to Collective Table]] | ||
+ | |||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 15:21, 14 December 2011
If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. |
Basic Signals and Functions in one variable | |
---|---|
Continuous-time signals. | |
sinc function | $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R} $ |
rect function | $ rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $ |
CT unit step function | $ u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $ |
Discrete-time signals | |
DT delta function | $ \delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $ |
DT unit step function | $ u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $ |
Basic Signals and Functions in two variables | |
Continuous-time | |
(info) 2D sinc dirac delta |
$ \delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R} $ |
(info) 2D sinc function |
$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R} $ |
(info) 2D rect function |
$ rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R} $ |
Go to Relevant Course Page: ECE 301
Go to Relevant Course Page: ECE 438